

Trip Report: Dagstuhl Seminar on Progressive Data Analysis and Visualization

Jean-Daniel Fekete, Inria Michael SedImair, Univ. of Stuttgart

Progressive Data Analysis and Visualization

- Seminar took place October 7 12, 2018 (2 weeks ago)
- Organizers:
 - Jean-Daniel Fekete, Inria, FR
 - Danyel Fisher, Honeycomb, US
 - Arnab Nandi, Ohio State University, US
 - Michael Sedlmair, Univ. Stuttgart, DE
- About 30 participants from:
 - Visualization
 - Database
 - Machine-Learning

zation

.dagstuhl.de/18411

What's the problem?

- New infrastructures allow big-data analysis at scale
 - but only for predictive computation
- Exploratory Data Analysis not well supported
 - Iterative loop should be kept under bounded latency
 - 0.1s for animation, 1s for interface reaction, 10s for results
 - When data grows or computations become more complex, existing systems exceed these latencies
- Progressive Data Analysis is meant to address the latency issue
 - Maintain the analyst's attention
 - Allow early decision

Progressive Computation: What is it?

- A computation
 - bounded on time and data
- which reports intermediate outputs
 - a result,
 - a measure of quality,
 - a measure of progress
- within bounded latency
- converging towards the true result
- controllable by a user during execution •
 - abort, pause, etc.
 - parameters (steering)

Williams, M.; Munzner, T., "Steerable, Progressive Multidimensiona Scaling," in INFOVIS 2004.

Batch Visual Analytics Workflow

Analytics. IEEE TVCG (Volume 20, Issue 12, 2014).

Charles D. Stolper, Adam Perer, and David Gotz. Progressive Visu

Organisation of the Seminar

- 5 Lightning Talks
- Short success stories presentations
- 2 sessions of breakout groups
 - 2 half days of group discussion per session
 - Report after each half day (except 1)
 - First session groups decided on day 1
 - Second session groups decided on day 3
- Final discussion
- Decision of outcomes

First Session Groups

- Definition & Vocabulary
- Task Analysis & Users
- Architecture
- Uncertainty

10-DStaying 2) Definitions & Vocabulary/(creedines 6 - FTrier (2) Uncertainty + PROGRESS Bir + MARCHIS 12 - PS005 (4) UI Design / Interaction + Progress Bor (10 - 40) 10-1>Kaiserslautern

Second Session Groups

- Definition (cont.)
- Evaluation & Benchmarking
- Human in the Progressive Loop
- Machine Learning
- Threats

waxa Znd Vound ceases (1) Definition, formalisms & Theorres - PSO3 2) ML + Progressive -PS05 3) Evaluation & Berchmarks -P Thier Humans in the progressive Loop -> HERE) THREATS: PDAV considered Warmful (Devil's advocate) -> Kaiserslautern

Definition & Vocabulary

Michael Aupetit, Christopher Jermaine, Jaemin Jo, Gaëlle Richer, Giuseppe Santucci, Hans-Jörg Schulz, Chad Stolper

	Input	Desirable Result R	Cmp Time t	Alg Params P	Quality Q	Progress π
Eager	$F_e(S, P, D)$	Exact R_D	t_D	Fixed	Baseline	Irrelevant
AQP	$F_a(S, P, D, \theta)$	Apx $d(R, R_D) \ge 0$	$\leq heta$	Fixed	Unbounded	Irrelevant
Optimistic	Composed: AQP and eager	$R_2 = R_D$	$\leq t_D + \theta$	Fixed	Unbd→Baseline	Explicit
Online	$F_o(S_z, P, \bigcup C_{1,,z})$	Exact for $z = n_C$	$\ll t_D$	Fixed	Baseline	Implicit
Streaming	$F_s(S_z, P, C_z)$	Apx $d(R_z, R_D) \ge 0$	$\ll t_D$	Fixed	Unbounded	Implicit
Iterative	$F_i(S_z, P, D)$	$R_z \longrightarrow R_D$	Unbounded	Fixed	Unbounded	Implicit
Progressive	$F_p(S_z, P_z, D_z, \theta)$	$R_z \xrightarrow[z \to \infty]{z \to Z} R_D$	$\leq heta$	Ctrled	Unbounded	Explicit

Table 1: Comparison of computation methods properties.

 t_D is time taken on full dataset D.

 $\bigcup_{z \in \{1...n_C\}} C_z = D \text{ and } C_i \cap C_j = \emptyset.$ $D_i \subseteq D.$ θ is a user-defined upper-bound on latency

Output is always: $(S_{z+1}, R_z, t_z, Q_z, \pi_z)$

Uncertainty

Marco Angelini, Sriram Karthik Badam, Barbara Hammer, Christopher M. Jermaine, Hannes Mühleisen, Cagatay Turkay, Frank van Ham, Anna Vilanova, Yunhai Wang

4 stages

- don't even look -- chaos
- don't trust -- might be interesting though 0
- ready to make decision Ο
- waste of user & computer time Ο [Angelini et al.]

Machine Learning

Nicola Pezzotti, Barbara Hammer, Daniel A. Keim, Cagatay Turkay, Yunhai Wang, Themis Palpanas, Florin Rusu, Carsten Binnig, Hendrik Strobelt

Architecture

Chad Stolper, Chris Weaver, Florian Rusu, Carsten Binnig, Stefan Manegold, Jörn Kohlhammer, Nicola Pezzotti

- 5 stages ... current databases
 - o give you all results at once
 → progressive results
 - no change of the query while it is running \rightarrow want to steer queries
 - always compute from scratch
 intelligently reuse
 - \rightarrow intelligently reuse
 - don't predict
 - \rightarrow future queries
 - user context

SQI

Tasks & Users

Luana Micallef, Remco Chang, Hendrik Strobelt, Adam Perer, Dominik Moritz, Emanuel Zgraggen, Themis Palpanas, Michael Aupetit, Thomas Mühlbacher

- Developed a set of use cases/scenarios
- e.g. how progressive analytics could help in disaster scenarios

Humans in the Progressive Loop

Marco Angelini, Remco Chang, Jörn Kohlhammer, Luana Micallef, Thomas Mühlbacher, Adam Perer, Giuseppe Santucci, Hans-Jörg Schulz, Chris Weaver

- Types of Users
 - Consumer
 - Domain Expert 0
 - Data Scientist
 - Learner / Apprentice
- User Strategies
- **Cognitive Biases**

Evaluation & Benchmarks

Hannes Mühleisen, Sriram Karthik Badam, Stefan Manegold, Jaemin Jo

- User Studies

Threats

Christopher M. Jermaine, Dominik Moritz, Anna Vilanova, Emanuel Zgraggen

- Cost vs Benefits
- Uncertainty and Progressiveness
- What's new?

Visual Analytics is limited wrt big data and expensive algorithms
Progressive Data Analysis and Visualization will make it scalable
probably with limitations

Brian R. Gaines, *Modeling and forecasting the information sciences*, Information Sciences, Volumes 57–58, 1991, Pages 3-22, ISSN 0020-0255, https://doi.org/10.1016/0020-0255(91)90066-4.

