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How would you describe “furniture”?

A thought experiment



If you thought of an example, 
you are not alone

Prototyping
Exemplar-based reasoning
Recognition-primed decision making



How can we improve how we communicate with 
our data tools?

What are example-driven interfaces?



SQL?

SELECT * FROM BOXES 
B, CHOCOLATES C 
WHERE B.CID = C.CID, 
…

Possibly incorrect

Pick one!

Possibly a long  
wait

 Choco DB

Suppose you want to buy a box of chocolates

Chocolatier

Yes/No, but…

Like this?

I want a box of …

Viola!



Suppose you want to buy a box of chocolates

Chocolatier

Yes/No, but…

Like this?

I want a box of …

Viola!

EDIs mimic human interactions: they allow examples of (un)expected behavior, 
which can be underspecified or ambiguous, and work towards a precise 
specification of behavior through further human interaction such as requesting 
more examples, counter-examples, partial specifications, constraints, etc.

EDIs can support a variety of data tasks: extraction, transformation, 
visualization, querying, analysis, debugging, generation, etc.



What  
are EDIs? 

Why  
now? 

How  
to build them? 

When  
does it work? 

Where 
do we go from here?



Why is now the right time for example-driven 
interfaces?

A confluence of many maturing research areas



1975



Program Synthesis1

Mixed Initiative User Interfaces

Eric Horvitz. Principles of mixed-initiative 
user interfaces. CHI '99. ACM

1997 1999

2

Armando Solar-Lezama. Program 
Synthesis by Sketching. PhD Thesis. 
UC-Berkeley 

S. Gulwani, O. Polozov and R. Singh. Program 
Synthesis. Foundations and Trends
in Programming Languages, vol. 4, no. 1-2

Alonzo Church. Application of recursive 
arithmetic to the problem of circuit synthesis. In 
Summaries of Talks Presented at the Summer 
Institute for Symbolic Logic, Cornell University.

20171957 2008

Circuit Synthesis Solver-backed Synthesis PBE is mainstream: FlashFill in Excel

Jeffrey Heer, Joseph M. Hellerstein, Sean Kandel. 
Predictive Interaction for Data Transformation. CIDR’15

2007 2015



Dana Angluin. Learning regular sets from queries 
and counterexamples. Inf. Comput. 75, 2

20171987

Learning Theory: Membership Questions,Teaching Dimension, … Crowd-sourced & Function Labeling

Christopher Ré. Software 2.0 and Snorkel: 
Beyond Hand-Labeled Data.  KDD '18.

Active Learning3

David Hume: We may define a cause to be an 
object followed by another, and where all the 
objects, similar to the first, are followed by objects 
similar to the second. Or, in other words, where, if 
the first object had not been, the second never 
had existed.”

20051748

Lineage & Provenance in Databases Causality & Explanations

Joseph Y. Halpern & Judea Pearl. Causes 
and explanations: A structural-model 
approach. Part I: Causes. British Journal for 
the Philosophy of Science 56 (4)

2000
Meliou et al. Why so? or Why 
no? Functional Causality for 
Explaining Query Answers.
MUD

2010

Causality & Explanations4



1987
Jock Mackinlay. Automating the Design of 
Graphical Presentations of Relational Information. 
ACM Transactions on Graphics 5(2).

2010
Heer & Bostock. Crowdsourcing Graphical 
Perception: Using Mechanical Turk to Assess 
Visualization Design. CHI

2011
2018
Moritz et al. Formalizing Visualization 
Design Knowledge as Constraints: 
Actionable and Extensible Models in 
Draco. InfoVis

2003

1984
Cleveland & McGill. Graphical Perception: Theory, 
Experimentation, and Application to the Development of 
Graphical Methods. Journal of the American Statistical 
Association 79(387)

2016
Satyanarayan et al. Vega-Lite: A Grammar 
of Interactive Graphics. InfoVis

Automatic, Declarative, Data Visualization5



How to build example-driven data tools?

An example recipe



The Dimensions of Example-Driven Interfaces
From Sumit Gulwani’s Cookbook - Dimensions of Program Synthesis

Intent Specification Search Space Search Techniques

Ambiguity Resolution

Inputs, Outputs
Positive & Negative

Program Sketch 

Scope & define your tasks
Create a syntactic bias

DSL
(Invertible) Operators

Templates

Version Space Algebras
SMT-guided search
Brute-force search

Ranking
Distinguishing Inputs
Exposing Semantics



When do example-driven data tools work?

A few illustrative examples from my research



DataPlay
Example-driven database querying

Abouzied et al. DataPlay: Interactive Tweaking 
and Example-driven Correction of Graphical 
Database Queries. UIST 2012
Abouzied et al. Learning and verifying quantified 
boolean queries by example. PODS 2013



SEER
Example-driven data extraction from text

Maeda Hanafi, Azza Abouzied, Laura Chiticariu, 
and Yunyao Li. SEER: Learning Information 
Extraction Rules from User-Specified Examples. 
CHI 2017



Qetch
Time series querying with hand-drawn sketches

Miro Mannino, Azza Abouzied. Expressive Time 
Series Querying with Hand-Drawn Scale-Free 
Sketches. CHI 2018 - Best Paper Award



When do example-driven data tools fail?

A case-study on debugging data processing pipelines by example



Where do we go from here?

Some parting thoughts on the future of this research



Visualization 
Research

Exciting opportunities 
at the interplay of 
visualizing program 
artifacts & data

Wongsuphasawat, Kanit, Daniel Smilkov, James 
Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz, 
Dilip Krishnan, Fernanda B. Viégas, and Martin 
Wattenberg. Visualizing dataflow graphs of deep 
learning models in TensorFlow. IEEE transactions on 
visualization and computer graphics 24, no. 1 
(2018): 1-12.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer. 
Augmenting Code with In Situ Visualizations to Aid 
Program Understanding. CHI ’18. 

The What-If  
Tool: Code-Free 
Probing of 
Machine 
Learning 
Models. Google 
AI



Data 
Research

Open up the database: 
The human interactions 
should drive the 
(re)design of 
abstractions and 
operations. Exciting 
opportunities in 
incremental & interactive 
querying and beyond 
relational data & queries 
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The global predicates in query  abbreviate aggregates 
that are in reality SQL subqueries. For example, COUNT(P.*) 
= 3, abbreviates (SELECT COUNT(*) FROM P) = 3. Using sub-
queries, PaQL can express arbitrarily complex global con-
straints among aggregates over a package.

Objective clause. The objective clause specifi es a rank-
ing among candidate package results and appears with 
either the MINIMIZE or MAXIMIZE keyword. It is a condition 
on the package-level, and hence it is specifi ed over the pack-
age result P, for example, MINIMIZE SUM(P.sat_fat). Similar 
to global predicates, this form is a shorthand for MINIMIZE 
(SELECT SUM(sat_fat) FROM P). A PaQL query with an objec-
tive clause returns a single result: the package that optimizes 
the value of the objective. The evaluation methods that we 
present in this work focus on such queries. In prior work,6 
we described preliminary techniques for returning multiple 
packages in the absence of optimization objectives, but a 
thorough study of such methods is left to future work.

Expressiveness and complexity. PaQL can express gen-
eral ILP, which means that evaluation of package queries is 
NP-complete.4, 5 As a fi rst step in package evaluation, we pro-
ceed to show how a PaQL query can be transformed into a 
linear program and solved using general ILP solvers.

3. ILP FORMULATION
In this section, we present an ILP formulation for pack-
age queries, which is at the core of our evaluation methods 
Direct and SketchRefine. The results in this section are 
inspired by the translation rules employed by Tiresias15 to 
answer how-to queries.

3.1. PaQL to ILP translation
Let R indicate the input relation of the package query, n = |R| 
be the number of tuples in R, R.attr an attribute of R, P a pack-
age, f a linear aggregate function (such as COUNT and SUM), 
⊙ ∈ {≤,≥} a constraint inequality, and v ∈ R a constant. For 
each tuple ti from R, 1 ≤ i ≤ n, the ILP problem includes a 
nonnegative integer variable xi, xi ≥ 0, indicating the num-
ber of times ti is included in an answer package. We also use 

1 2, , , nx x x x= …  to denote the vector of all integer variables. 
A PaQL query is formulated as an ILP problem using the fol-
lowing translation rules.

Repetition constraint. The REPEAT keyword, expressible 
in the FROM clause, restricts the domain that the variables 
can take on. Specifi cally, REPEAT ρ implies 0 ≤ xi ≤ ρ + 1.

Base predicate. Let b be a base predicate, for example, 
R.gluten = ‘free’, and Rb the relation containing tuples from 

Basic package query. The new keyword PACKAGE differ-
entiates PaQL from traditional SQL queries.

1: SELECT * 2: SELECT PACKAGE(*) AS P
    FROM     Recipes R     FROM       Recipes R

The semantics of 1 and 2 are fundamentally different: 1 
is a traditional SQL query, with a unique, fi nite result set (the 
entire Recipes table), whereas there are infi nitely many pack-
ages that satisfy the package query 2: all possible multisets of 
tuples from the input relation. The result of a package query 
like 2 is a set of packages. Each package resembles a relational 
table containing a collection of tuples (with possible repeti-
tions) from relation Recipes, and therefore a package result of 

2 follows the schema of Recipes. Similar to SQL, the PaQL syn-
tax allows the specifi cation of the output schema in the SELECT 
clause. For example, PACKAGE(sat_fat, kcal) only returns the 
saturated fat and calorie attributes of the package.

Although semantically valid, a query like 2 would not 
occur in practice, as most application scenarios expect few, 
or even exactly one result. We proceed to describe the addi-
tional constraints in the example query  (Figure 2) that 
restrict the number of package results.

Repetition constraints. The REPEAT 0 statement in query 
 from Figure 2 specifi es that each tuple from the input 

relation Recipe can appear in a package result at most once 
(no repetitions are allowed). If this restriction is absent 
(as in query 2), the multiplicity of a tuple is unbounded. 
By allowing no repetitions,  restricts the package space 
from infi nite to 2n, where n is the size of the input relation. 
Generalizing, REPEAT ρ allows a package to repeat tuples 
up to ρ times, resulting in (2 + ρ)n candidate packages.

Base and global predicates. A package query defi nes two 
types of predicates. A base predicate, defi ned in the WHERE 
clause, is equivalent to a selection predicate and can be eval-
uated with standard SQL: any tuple in the package needs to 
individually satisfy the base predicate. For example, query  
from Figure 2 specifi es the base predicate: R.gluten = ‘free’. 
Since base predicates directly fi lter input tuples, they are 
specifi ed over the input relation R. Global predicates are the 
core of package queries, and they appear in the new SUCH 
THAT clause. Global predicates are higher-order than base 
predicates: they cannot be evaluated on individual tuples, 
but on tuple collections. Since they describe package-level 
constraints, they are specifi ed over the package result P, for 
example, COUNT(P.*) = 3, which limits the query results to 
packages of exactly 3 tuples.

SELECT PACKAGE (∗|column_name [, . . .]) [AS] package_name
FROM relation_name [AS] relation_alias

[REPEAT repeat] [, . . .]
[WHERE w_expression ]
[SUCH THAT st_expression ]
[ (MINIMIZE|MAXIMIZE) obj_expression ]

PACKAGE (∗) AS P
Recipes R REPEAT 0FROM

WHERE R.gluten = ‘free’
SUCH THAT COUNT (P.∗) = 3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.sat_fat)

PaQL query for Example 1PaQL syntax specification

: SELECT 

Figure 2: Specifi cation of the PaQL syntax (left), and the PaQL query for Example 1 (right).
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Thank you

Can’t wait to hear your thoughts, comments or questions.


