
transform by example
extract by example
learn by example
fix by example

search by example
analyze by example
generate by example
debug by example
predict by example
query by example
plot by example

transform by example
extract by example
learn by example
fix by example

search by example
analyze by example
generate by example
debug by example
predict by example
query by example
plot by example

transform by example
extract by example
learn by example
fix by example

search by example
analyze by example
generate by example
debug by example
predict by example

x by example Azza Abouzied, NYU Abu Dhabi
azza@nyu.edu

About me Projects, Places & Events

Started
PhD in
Database
research

2008

HadoopDB Hadapt

A tutorial on Visualization
at VLDB by Joe Hellerstein
& Jeff Heer

2009 2012

DataPlay

2013

Joined NYU Retargeting my research at the 99%

SEER Qetch Synner TextureWhyFlow

2018

PackageBuilder
InvisibleLoading

@Happy Island, Abu Dhabi @UC Berkeley@Yale, New Haven

How would you describe “furniture”?

A thought experiment

If you thought of an example,
you are not alone

Prototyping
Exemplar-based reasoning
Recognition-primed decision making

How can we improve how we communicate with
our data tools?

What are example-driven interfaces?

SQL?

SELECT * FROM BOXES
B, CHOCOLATES C
WHERE B.CID = C.CID,
…

Possibly incorrect

Pick one!

Possibly a long
wait

 Choco DB

Suppose you want to buy a box of chocolates

Chocolatier

Yes/No, but…

Like this?

I want a box of …

Viola!

Suppose you want to buy a box of chocolates

Chocolatier

Yes/No, but…

Like this?

I want a box of …

Viola!

EDIs mimic human interactions: they allow examples of (un)expected behavior,
which can be underspecified or ambiguous, and work towards a precise
specification of behavior through further human interaction such as requesting
more examples, counter-examples, partial specifications, constraints, etc.

EDIs can support a variety of data tasks: extraction, transformation,
visualization, querying, analysis, debugging, generation, etc.

What
are EDIs?

Why
now?

How
to build them?

When
does it work?

Where
do we go from here?

Why is now the right time for example-driven
interfaces?

A confluence of many maturing research areas

1975

Program Synthesis1

Mixed Initiative User Interfaces

Eric Horvitz. Principles of mixed-initiative
user interfaces. CHI '99. ACM

1997 1999

2

Armando Solar-Lezama. Program
Synthesis by Sketching. PhD Thesis.
UC-Berkeley

S. Gulwani, O. Polozov and R. Singh. Program
Synthesis. Foundations and Trends
in Programming Languages, vol. 4, no. 1-2

Alonzo Church. Application of recursive
arithmetic to the problem of circuit synthesis. In
Summaries of Talks Presented at the Summer
Institute for Symbolic Logic, Cornell University.

20171957 2008

Circuit Synthesis Solver-backed Synthesis PBE is mainstream: FlashFill in Excel

Jeffrey Heer, Joseph M. Hellerstein, Sean Kandel.
Predictive Interaction for Data Transformation. CIDR’15

2007 2015

Dana Angluin. Learning regular sets from queries
and counterexamples. Inf. Comput. 75, 2

20171987

Learning Theory: Membership Questions,Teaching Dimension, … Crowd-sourced & Function Labeling

Christopher Ré. Software 2.0 and Snorkel:
Beyond Hand-Labeled Data. KDD '18.

Active Learning3

David Hume: We may define a cause to be an
object followed by another, and where all the
objects, similar to the first, are followed by objects
similar to the second. Or, in other words, where, if
the first object had not been, the second never
had existed.”

20051748

Lineage & Provenance in Databases Causality & Explanations

Joseph Y. Halpern & Judea Pearl. Causes
and explanations: A structural-model
approach. Part I: Causes. British Journal for
the Philosophy of Science 56 (4)

2000
Meliou et al. Why so? or Why
no? Functional Causality for
Explaining Query Answers.
MUD

2010

Causality & Explanations4

1987
Jock Mackinlay. Automating the Design of
Graphical Presentations of Relational Information.
ACM Transactions on Graphics 5(2).

2010
Heer & Bostock. Crowdsourcing Graphical
Perception: Using Mechanical Turk to Assess
Visualization Design. CHI

2011
2018
Moritz et al. Formalizing Visualization
Design Knowledge as Constraints:
Actionable and Extensible Models in
Draco. InfoVis

2003

1984
Cleveland & McGill. Graphical Perception: Theory,
Experimentation, and Application to the Development of
Graphical Methods. Journal of the American Statistical
Association 79(387)

2016
Satyanarayan et al. Vega-Lite: A Grammar
of Interactive Graphics. InfoVis

Automatic, Declarative, Data Visualization5

How to build example-driven data tools?

An example recipe

The Dimensions of Example-Driven Interfaces
From Sumit Gulwani’s Cookbook - Dimensions of Program Synthesis

Intent Specification Search Space Search Techniques

Ambiguity Resolution

Inputs, Outputs
Positive & Negative

Program Sketch

Scope & define your tasks
Create a syntactic bias

DSL
(Invertible) Operators

Templates

Version Space Algebras
SMT-guided search
Brute-force search

Ranking
Distinguishing Inputs
Exposing Semantics

When do example-driven data tools work?

A few illustrative examples from my research

DataPlay
Example-driven database querying

Abouzied et al. DataPlay: Interactive Tweaking
and Example-driven Correction of Graphical
Database Queries. UIST 2012
Abouzied et al. Learning and verifying quantified
boolean queries by example. PODS 2013

SEER
Example-driven data extraction from text

Maeda Hanafi, Azza Abouzied, Laura Chiticariu,
and Yunyao Li. SEER: Learning Information
Extraction Rules from User-Specified Examples.
CHI 2017

Qetch
Time series querying with hand-drawn sketches

Miro Mannino, Azza Abouzied. Expressive Time
Series Querying with Hand-Drawn Scale-Free
Sketches. CHI 2018 - Best Paper Award

When do example-driven data tools fail?

A case-study on debugging data processing pipelines by example

Where do we go from here?

Some parting thoughts on the future of this research

Visualization
Research

Exciting opportunities
at the interplay of
visualizing program
artifacts & data

Wongsuphasawat, Kanit, Daniel Smilkov, James
Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz,
Dilip Krishnan, Fernanda B. Viégas, and Martin
Wattenberg. Visualizing dataflow graphs of deep
learning models in TensorFlow. IEEE transactions on
visualization and computer graphics 24, no. 1
(2018): 1-12.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer.
Augmenting Code with In Situ Visualizations to Aid
Program Understanding. CHI ’18.

The What-If
Tool: Code-Free
Probing of
Machine
Learning
Models. Google
AI

Data
Research

Open up the database:
The human interactions
should drive the
(re)design of
abstractions and
operations. Exciting
opportunities in
incremental & interactive
querying and beyond
relational data & queries

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 3

The global predicates in query abbreviate aggregates
that are in reality SQL subqueries. For example, COUNT(P.*)
= 3, abbreviates (SELECT COUNT(*) FROM P) = 3. Using sub-
queries, PaQL can express arbitrarily complex global con-
straints among aggregates over a package.

Objective clause. The objective clause specifi es a rank-
ing among candidate package results and appears with
either the MINIMIZE or MAXIMIZE keyword. It is a condition
on the package-level, and hence it is specifi ed over the pack-
age result P, for example, MINIMIZE SUM(P.sat_fat). Similar
to global predicates, this form is a shorthand for MINIMIZE
(SELECT SUM(sat_fat) FROM P). A PaQL query with an objec-
tive clause returns a single result: the package that optimizes
the value of the objective. The evaluation methods that we
present in this work focus on such queries. In prior work,6
we described preliminary techniques for returning multiple
packages in the absence of optimization objectives, but a
thorough study of such methods is left to future work.

Expressiveness and complexity. PaQL can express gen-
eral ILP, which means that evaluation of package queries is
NP-complete.4, 5 As a fi rst step in package evaluation, we pro-
ceed to show how a PaQL query can be transformed into a
linear program and solved using general ILP solvers.

3. ILP FORMULATION
In this section, we present an ILP formulation for pack-
age queries, which is at the core of our evaluation methods
Direct and SketchRefine. The results in this section are
inspired by the translation rules employed by Tiresias15 to
answer how-to queries.

3.1. PaQL to ILP translation
Let R indicate the input relation of the package query, n = |R|
be the number of tuples in R, R.attr an attribute of R, P a pack-
age, f a linear aggregate function (such as COUNT and SUM),
⊙ ∈ {≤,≥} a constraint inequality, and v ∈ R a constant. For
each tuple ti from R, 1 ≤ i ≤ n, the ILP problem includes a
nonnegative integer variable xi, xi ≥ 0, indicating the num-
ber of times ti is included in an answer package. We also use

1 2, , , nx x x x= … to denote the vector of all integer variables.
A PaQL query is formulated as an ILP problem using the fol-
lowing translation rules.

Repetition constraint. The REPEAT keyword, expressible
in the FROM clause, restricts the domain that the variables
can take on. Specifi cally, REPEAT ρ implies 0 ≤ xi ≤ ρ + 1.

Base predicate. Let b be a base predicate, for example,
R.gluten = ‘free’, and Rb the relation containing tuples from

Basic package query. The new keyword PACKAGE differ-
entiates PaQL from traditional SQL queries.

1: SELECT * 2: SELECT PACKAGE(*) AS P
 FROM Recipes R FROM Recipes R

The semantics of 1 and 2 are fundamentally different: 1
is a traditional SQL query, with a unique, fi nite result set (the
entire Recipes table), whereas there are infi nitely many pack-
ages that satisfy the package query 2: all possible multisets of
tuples from the input relation. The result of a package query
like 2 is a set of packages. Each package resembles a relational
table containing a collection of tuples (with possible repeti-
tions) from relation Recipes, and therefore a package result of

2 follows the schema of Recipes. Similar to SQL, the PaQL syn-
tax allows the specifi cation of the output schema in the SELECT
clause. For example, PACKAGE(sat_fat, kcal) only returns the
saturated fat and calorie attributes of the package.

Although semantically valid, a query like 2 would not
occur in practice, as most application scenarios expect few,
or even exactly one result. We proceed to describe the addi-
tional constraints in the example query (Figure 2) that
restrict the number of package results.

Repetition constraints. The REPEAT 0 statement in query
 from Figure 2 specifi es that each tuple from the input

relation Recipe can appear in a package result at most once
(no repetitions are allowed). If this restriction is absent
(as in query 2), the multiplicity of a tuple is unbounded.
By allowing no repetitions, restricts the package space
from infi nite to 2n, where n is the size of the input relation.
Generalizing, REPEAT ρ allows a package to repeat tuples
up to ρ times, resulting in (2 + ρ)n candidate packages.

Base and global predicates. A package query defi nes two
types of predicates. A base predicate, defi ned in the WHERE
clause, is equivalent to a selection predicate and can be eval-
uated with standard SQL: any tuple in the package needs to
individually satisfy the base predicate. For example, query
from Figure 2 specifi es the base predicate: R.gluten = ‘free’.
Since base predicates directly fi lter input tuples, they are
specifi ed over the input relation R. Global predicates are the
core of package queries, and they appear in the new SUCH
THAT clause. Global predicates are higher-order than base
predicates: they cannot be evaluated on individual tuples,
but on tuple collections. Since they describe package-level
constraints, they are specifi ed over the package result P, for
example, COUNT(P.*) = 3, which limits the query results to
packages of exactly 3 tuples.

SELECT PACKAGE (∗|column_name [, . . .]) [AS] package_name
FROM relation_name [AS] relation_alias

[REPEAT repeat] [, . . .]
[WHERE w_expression]
[SUCH THAT st_expression]
[(MINIMIZE|MAXIMIZE) obj_expression]

PACKAGE (∗) AS P
Recipes R REPEAT 0FROM

WHERE R.gluten = ‘free’
SUCH THAT COUNT (P.∗) = 3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.sat_fat)

PaQL query for Example 1PaQL syntax specification

: SELECT

Figure 2: Specifi cation of the PaQL syntax (left), and the PaQL query for Example 1 (right).

62.2_RHBrucato.indd 362.2_RHBrucato.indd 3 7/25/2018 5:42:33 PM7/25/2018 5:42:33 PM

Kim et al. Rapid sampling for
visualizations with ordering
guarantees. VLDB ‘15
Siddiqui et al. Effortless Visual Data
Exploration with Zenvisage: An
Interactive and Expressive Visual
Analytics System. VLDB ‘17

Brucato, Matteo, Azza Abouzied, and Alexandra Meliou. Package queries:
efficient and scalable computation of high-order constraints. The VLDB
Journal 2018

Kexin Rong, Peter Bailis. ASAP:
Prioritizing Attention via Time Series
Smoothing, VLDB ’17
Bailis et al. MacroBase: Prioritizing
Attention in Fast Data, SIGMOD
2017.

Thank you

Can’t wait to hear your thoughts, comments or questions.

