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Abstract— Zoomable spatial visualizations (ZSV) have shown to be effective in reducing visual clutter and occlusion on big skewed
datasets, which has been the Achilles heel of static spatial visualizations. However, programming ZSVs is a daunting task with existing
tools/systems. First, many ZSV systems assume that data fits in memory, fetching data in user’s viewport on-the-fly. Therefore, they
cannot scale to big skewed datasets. Second, majority of the ZSV systems focus on only a subset of the ZSV design space, inevitably
leading to low flexibility. Lastly, general pan/zoom toolkits do not assist the developer with managing visual clutter and occlusion,
which is a very challenging task especially on big datasets. In this paper, we describe AutoDD, a work-in-progress system for easy
construction of ZSVs at scale. AutoDD adopts a declarative model that captures a large design space, allowing easy specifications of
ZSVs that are suitable for a variety of ZSV tasks. Behind the scenes, AutoDD efficiently calculates the layout of objects in the multi-
scale zooming space that satisfies occlusion and density constraints. To achieve interactive pan/zoom rates, we integrate AutoDD
with Kyrix, a recent system for creating large-scale general zoomable visualizations.

1 INTRODUCTION

Spatial data visualizations such as attraction maps and scatterplots are
an essential component of exploratory visualization systems. By vi-
sualizing data items on a two dimensional cartesian plane decorated
with visual channels such axes and background maps, these visualiza-
tions provide domain analysts with positional contexts of the underly-
ing data, allowing them to both inspect individual visual objects and
find global patterns that drive important decision making.

For big and skewed datasets, visualizing every single data item in-
evitably leads to overcrowded display. To address visual clutter, there
has been substantial research [22, 17, 23, 19, 21, 13, 12] on devising
aggregated visualizations (e.g. density maps and bar charts). While
aggregated visualizations are free of visual clutter, they lack the func-
tionality to query individual objects, which is often crucial in many
tasks performed in spatial visualizations [27, 9, 24]. Prior research
also studied how to use transparency [10, 15], animation [6] and dis-
placement of visual objects [30, 14, 29] to ease the overdraw problem.
However, due to limited screen resolution and human perception abil-
ity, these approaches possess limited scalability.

Zoomable spatial visualizations (ZSV) have shown the potential to
mitigate visual clutter, while allowing many tasks typically performed
on spatial visualizations such as interaction with individual visual ob-
jects and focused exploration within a neighborhood [27]. By ex-
panding the two dimensional plane into a multi-scale zooming space,
more screen resolution becomes available, allowing visual objects to
be placed in a way that possibly avoids occlusion and excessive den-
sity. The user of a ZSV can use pan and zoom to conveniently navigate
this large multi-scale data space to get either an overview of the under-
lying data or a focused inspection of an area of interest. For example,
Figure 2c is a ZSV of NBA basketball games constructed by the sys-
tem we describe in this paper. The user can see a few exemplary games
on the top zoom level, and zoom in to see more games.

Despite the utility of ZSVs, programming such visualizations re-
mains a daunting task for application developers, especially when the
data is large and skewed. The reasons are multifold.

Firstly, tools for creating general zoomable visualizations (e.g.
Kyrix [28], Pad++ [2], Jazz [3] and ZVTM [26]) require the developer
to manually generate the object layouts in the multi-scale zooming
space (e.g. what visual objects appear on what zoom level) to manage
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clutter and occlusion on his/her own. This is a challenging task espe-
cially for big datasets [31, 11, 16]. Therefore, users of these systems
inevitably experience prolonged development and likely unsatisfying
end results.

Secondly, big skewed datasets pose significant challenges to the
scalability of existing ZSV systems. Many systems [31, 5, 20, 16, 11]
assume that data fits in memory, retrieving visual objects in the user’s
viewport on-the-fly. This assumption is not practical when the dataset
is highly skewed and millions of visual objects can be in the viewport
at the same time. Some systems precompute [5, 16, 8, 4] the object
layouts of the ZSV, but the precomputation algorithms are not paral-
lelized and thus cannot scale to large datasets.

Lastly, many prior ZSV systems/tools focus on only a subset of
the ZSV design space, preventing the developer from flexibly making
application-specific design choices. For example, much attention has
been drawn to specific types of visual object encodings, e.g., small-
sized dots [8, 31, 5], heatmap [25, 7], glyph-based encodings [16, 4]
and contours [20]. Some works focus on object overlap removal [4, 5]
while others center on density limits [8, 25, 11, 32]. The narrow fo-
cuses make these tools hard to extend to general scenarios, require the
developer to constantly switch tools for different application require-
ments and stymie the creation of customized visualizations.

These limitations of existing systems strongly motivate for an in-
tegrated system that supports easy specification of a wide range of
design choices of ZSVs, and automate the creation of ZSVs at scale.

In this paper, we describe our ongoing effort in building AutoDD,
a system for easy creation and exploration of ZSVs. Our goal is to
provide the developer with a concise declarative specification model
that is able to express a variety of ZSVs. Behind the scenes, we run
automated algorithms to decide the object layouts in the multi-scale
zooming space. To enable interactive browsing of the generated ZSVs,
we integrate our system with Kyrix [28], a recent system for creating
general zoomable visualizations of large datasets.

The rest of the paper is organized as follows. We first give an
overview of the system in Section 2. We then describe in Section 3 our
declarative specification model and example ZSVs. Section 4 presents
a hierarchical sampling and aggregation algorithm that generates the
object layouts of ZSVs.

2 SYSTEM OVERVIEW

We begin with overviewing the architecture, supported tasks and de-
sign goals of our system.

2.1 Architecture
Figure 1 shows the architecture of AutoDD. We build AutoDD on top
of Kyrix [28], a recent system we built for authoring general zoomable
visualizations at scale. Despite its generality (e.g. supporting general
data, more types zooming transitions), Kyrix does not support ZSVs
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Figure 1. AutoDD system architecture. AutoDD offers declarative spec-
ification of ZSVs, and generates Kyrix [28] applications to achieve inter-
active online performance at scale.

very well. Specifically, Kyrix leaves to the developer the burden of
generating object layouts of ZSVs, which is arguably a challenging
research topic for more than a decade. Furthermore, Kyrix’s declara-
tive grammar requires verbose specification of individual zoom levels,
which should be abstracted away by a more concise grammar.

These two limitations of Kyrix have strongly motivated the design
of AutoDD. We aim to provide the developer with a concise declar-
ative grammar for ZSVs, automate the layout generation, and use
Kyrix’s spatial indexing to achieve interactive pan and zoom.

Overall, AutoDD allows the developer to declaratively specify
ZSVs in the JSON format, and serves as a Kyrix application gener-
ator. We have integrated AutoDD into the open source Kyrix system1

to provide a set of high-level APIs for ZSV authoring.
Here, we first briefly present necessary background information on

Kyrix. Interested readers can refer to the paper [28] for more details.
Then we describe components of AutoDD in more details.
Kyrix. Kyrix offers declarative specification of general zoomable vi-
sualizations. The developer uses canvases to model different levels of
details in a zoomable visualization, and uses zooms to indicate that one
can zoom in/out from one canvas to another. Each canvas is consisted
of one or more overlaid layers, each of which is associated with the
following:

• One database query which the Kyrix back-end uses to fetch data
items from a database.

• One rendering function which the Kyrix front-end runs to convert
data items to visual objects.

• One placement function which calculates a bounding box for
each data item. The Kyrix back-end builds database spatial in-
dexes on these bounding boxes, and fetch data on demand at run-
time by querying data items whose bounding boxes intersect with
user’s viewport.

AutoDD’s layout generator. A layout generator computes the place-
ments of visual objects in the multi-scale zooming space and stores
them as database tables. Each database table serves as the data source
for one layer in the Kyrix application. Details of the layout algorithms
are in Section 4.
AutoDD’s Kyrix specification generator. Given a ZSV specification,
the Kyrix specification generator generates Kyrix specifications that
can be turned into interactive web-based visualizations. Generating
canvases and zooms is relatively straightforward. For each layer, the
database query is simply selecting everything from the corresponding
database table produced by the layout generator. The rendering and
placement functions are based on the value of various parameters in
the ZSV specification, e.g., visual object encodings, whether showing
outliers, bandwidth of density functions, etc. Details can be found in
Section 3.

2.2 Design Goals
Tasks and expressivity. We identify a set of ZSV tasks that AutoDD
should support on the basis of a recent survey of scatterplot tasks [27]

1https://www.github.com/tracyhenry/kyrix

which summarized twelve basic tasks that the user typically performs
with scatterplots (Table 1). Based on our knowledge of the ZSV liter-
ature and experiences with ZSV users, we augment this task set with
two more tasks that are specific to ZSVs: browsing exemplary objects
and inspect aggregated metrics.

Table 1. ZSV tasks supported in AutoDD, based on the scatterplot task
survey [27]. We augmented the original task set with two additional
tasks (in bold) for ZSVs.

Object-centric

Identify object
Locate object
Verify object

Object comparison

Browsing

Explore neighborhood
Search for known motif (cluster, correlation)

Look for global trends
Browse exemplary objects

Aggregate-level

Characterize distribution
Identify anomalies
Identify correlation
Density comparison
Undestand distances

Inspect aggregated metrics

Our first goal (G1) is to enable the developer to easily specify ZSV
designs that are appropriate for any desired task in Table 1. Although
it is possible to support more than one task in a single ZSV, we do not
attempt to enumerate all combinations here since there are too many of
them. Instead, we focus on supporting one task at a time, and explore
ways to support multiple tasks by overlaying multiple ZSVs.

According to the survey by Sarikaya et al [27], different design
choices often have different appropriateness for a given task. There-
fore, by accomodating different tasks, we naturally achieve reasonable
expressivity in design choices.
Scalability. Our second goal (G2) is to ensure the scalability of Au-
toDD. This goal has three subgoals. The first one is human perception
scalability (G2-a): users of the ZSVs generated by AutoDD should not
be burdend by too much information at any viewing region. Second,
although the layout generation is performed offline, it must scale to
large datasets (G2-b). More precisely, its time complexity must be at
most O(n logn) where n is the number of total data items, and should
be parallelized. Third, the end-to-end response times to any user inter-
action (pan or zoom) must be under 500 ms (G2-c), an emprical upper
bound that ensures fluid interactions [18].

2.3 Current Status
Currently, we have an intial AutoDD system running, with an incom-
plete declarative model that covers a subset of the tasks in Table 1, and
an O(n logn) layout generator algorithm that runs on a single node.

The following two sections describe the current system in greater
detail and present our plans towards fully fulfilling G1 and G2.

3 DECLARATIVE MODEL AND EXAMPLE ZSVS

G1 motivates us to design a concise and expressive declarative model
that captures a variety of design choices for different tasks.

By reviewing ZSVs in both the literature and commercial systems,
we identify a set of high-level design choices that form basic compo-
nents of AutoDD’s declarative model.
Data. We assume that raw data items reside in a database and should
be specified as a database query. AutoDD’s layout generator fetches
raw data items using this query and generates “cooked” data items
with additional information such as screen coordinates and aggregated
densities.
X & Y placement. This refers to the X and Y components of the
placements of objects within the multi-scale zooming space. To auto-
mate the calculation of these components, our declarative model only
asks the developer for two fields of raw data items (e.g. longitude
and latitude) that represent where the objects locate if every object is



(a) 

{
   "data": "SELECT * FROM GAMES;",
   "x": "home_score",
   "y": "away_score",
   "axis": true,
   "mark": "circle"
}

(b) 

{
   "data": "SELECT * FROM GAMES;",
   "x": "home_score",
   "y": "away_score",
   "z": "agg_ranking",
   "axis": true,
   "overlap": true,
   "mark": "contour+object",
   "renderer": "{custom renderer}"
}

(c) 

{
   "data": "SELECT * FROM GAMES;",
   "x": "home_score",
   "y": "away_score",
   "z": "agg_ranking",
   "axis": true,
   "mark": "object+numerosity",
   "renderer": "{custom renderer}"
}

Figure 2. Three example applications and their AutoDD specifications. They are all visualizations of 2017–2018 season NBA basketball games,
with X axis being the score of the home team and Y axis being the score of the away team: (a) circles with aggregated numbers showing the
number of objects around that area. The radius and font size of a circle is proportional to the number inside it; (b) contour lines showing the 2D
density distribution, with lighter colors indicating higher densities. The user can hover over the contour lines to see example games rendered using
a custom renderer. Games between teams with higher aggregated ranking are placed on top zoom levels. Overlap is allowed; (c) games are
rendered using a custom renderer, with aggregated numbers indicating numerosity. Games do not overlap.

drawn on a single-view static spatial visualization. The object layout
generator then takes care of the scaling of these attributes. Currently
we are focused on exact X/Y placements (i.e. X/Y are raw coordinates
scaled by a scaling factor). In the future, we plan to consider inexact
placements, e.g. binning the 2D canvas space or slight displacements
of the objects.

Z placement. The Z placements of objects are controlled by an im-
portance metric, specified as one field from raw data items. The lay-
out generator places more important objects above less important ob-
jects in the multi-scale zooming space, i.e., important objects appear
in overviews and less important objects are revealed as the user zooms
into detailed views.

Visual encodings. This refers to how “cooked” data items are con-
verted to visual objects on the screen. AutoDD provides a library of
such rendering templates, including (currently) thumbails, numbered
circles (Figure 2a) and contour density polygons (Figure 2b). We also
allow custom rendering functions (Figure 2c). We plan to allow speci-
fications of increasingly more detailed visual representations (e.g. em-
ployee thumbnails in overviews then detailed profile boxes in detailed
views).

Overlap. This controls whether object overlaps are allowed.

Overlay. Overlay allows two types of visual encodings to be visible at

the same time, which could enable a ZSV to be suitable for more tasks.
For example, overlaying transparent thumbnails over contour density
polygons is suitable for both “density comparison” and “browse exem-
plary objects” (Table 1). Neither encoding alone is suitable for both
tasks.

Figure 2 shows several examples constructed using the current Au-
toDD. These visualizations all feature multiple levels of details ar-
ranged in multiple zoom levels. As the user zooms in, either more
objects or finer-grained aggregated marks become visible. These are
backed by a hierarchical sampling and aggregation algorithm which
we describe in the next section.

4 LAYOUT ALGORITHM

In this section, we present the algorithm that the layout generator em-
ploys to place objects in the multi-scale zooming space.

To simplify the problem, we assume that multi-scale zooming space
is consisted of discrete zoom levels, where the levels are numbered 0,
1, 2 . . . from top to bottom, and the zoom factor between adjacent
levels is a constant (e.g. 2 as in many web maps). Having discrete
zoom levels has proven to be an universally accessible paradigm in
many visualization systems [28, 1]. It also frees us from optimizing in
a large and continuous search space.



This layout algorithm is divided into two phases. Phase I (Sec-
tion 4.1) is a top-down sampling process that decides the placement
of objects in the multi-scale zooming space. Phase II (Section 4.2)
computes necessary aggregation information, e.g., aggregated densi-
ties, averages and convex hulls, in a bottom up fashion. Both phases
add additional fields to raw data items, which can be used by corre-
sponding renderers to produce ZSVs.

4.1 Top Down Sampling
Phase I determines what objects appear on what zoom levels. Based
on the goals we have, we identify several constraints on the placement
of the objects:

• Zooming continuity. We enforce that if an object appears on one
zoom level, it always appear on zoom levels that are below this
level. So Phase I essentially determines for each object on which
zoom level it starts to appear. This “zooming continuity” is cru-
cial to making a ZSV usable [31].

• Overlap constraint. If non-overlapping is specified, objects
should not overlap with each other. We assume there is a
constant-sized bounding box associated with each object, either
built in with design templates or specified by the developer, and
only check the overlap of bounding boxes for simplicity.

• Density constraint. We impose an upper limit on the number of
objects in any 1K by 1K (in pixels) window on any zoom level.
Currently, this limit is determined based on empirical estimates
of how many objects Kyrix’s front-end and back-end can process
at the same time without compromising performance (G2-c). We
plan to look into human perception studies to get an upper limit
based on visual encoding complexity (G2-a), compare it with the
current limit and then choose the smaller one.

With these constraints, we optimize for two goals. First, we want
to place more important objects on top zoom levels if an importance
metric is specified. Second, we want to set up as few zoom levels
as possible (with the bottom level having all objects) to reduce the
amount of interaction required to reach the finest level of details.

We do not propose quantitative optimization metrics based on our
constraints and goals due to the potential complexity involved. A prior
work [31] has proposed an optimization metric with only a subset of
our constraints and goals, and has proven that finding the optimal ob-
ject placement is NP-hard. Therefore, we keep our optimization goals
qualitative and look for heuristic solutions.

A greedy-based sampling procedure. We perform the same sam-
pling procedure for each level, with the samples of level i being the
initial samples of level i+1 (the top level has no initial samples). This
ensures zooming continuity.

For each level, we iterate through all objects in their importance
order (if not specified, in any order). For each object considered, we
check if adding it violates the density constraint or the overlap con-
straint. If not, we add it to the sample set.

To check density and overlap constraints while trying to add an
object, we make use of a parameter θ , the ratio of the minimum X
(Y) distance between the centroids of any two data items to the width
(height) of the bounding box. The higher θ is, more spacing there
is between visual objects, and more likely it is that the density con-
straint is satisfied. Having “fewest zoom levels in mind”, we therefore
choose the smallest θ that satisfies the density constraint, which can
be derived mathematically. Note that if non-overlapping is specified,
θ must be at least 1.

The key challenge is how to make sure that the distance between
samples is as what θ dictates in an efficient way. We enlarge the
bounding boxes of objects by a factor of θ . We then maintain an R-
tree of the bounding boxes of existing samples. Every time we try to
sample a data item, we use the R-tree to test if the enlarged bounding
box of the new object overlaps with any existing bounding boxes. If
not, we add the bounding box of the new data item into the R-tree.

After this top-down sampling procedure, we produce a series of
zoom levels of data items, where each zoom level is stored in one

database table. Each data item is augmented with the X & Yplacement
information (note that Z is encoded by the database table). Also note
that a data item is duplicated to every zoom level where the associated
visual object is visible.

4.2 Bottom Up Aggregation

The objective of Phase II is to augment the data items produced in
Phase I with aggregation information that are necessary for aggregate
visual encodings, e.g. aggregated numerosity in Figures 2a and 2c,
and contour density polygons in Figure 2b.

To this end, we build a virtual hierarchical tree of objects as follows.
Each zoom level constructed in Phase I forms one level of the tree.
Nodes of the tree are objects. For each object on level i, use its nearest
neighbor on level i−1 as its ancestor.

With this tree, we can compute aggregation metrics, e.g., aver-
age/std/quantile of another field, convex hulls and top-k items, recur-
sively from the bottom level up. Note that this tree does not have to
be materialized. We maintain an R-tree for each level for fast ad-hoc
nearest neighbor queries. The following example illustrates the pro-
cess to calculate aggregated numerosity.
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Figure 3. An illustration of Phase I and Phase II. There are 9 objects
in total (A-I). Objects A-C are sampled on level 0. Objects D-G are
sampled on level 1. Objects H and I are sampled on level 2. The number
next to the objects in the tree represents how many objects an object
represents, i.e., aggregated numerosity as in Figures 2a and 2c.

Note that the contour density polygons in Figure 2b are also gener-
ated using the aggregated numerosity in Figure 3 to approximate ker-
nel density estimations. More specifically, instead of computing KDE
values using all objects, we use the numerosity count as the weight of
a sampled object. In other words, every object is represented by one
sampled object. One big advantage of our approach is that every ob-
ject is within a distance (bounding box size times θ ) to the object that
represents itself. As shown by [33], this leads to bounded KDE values.

4.3 Complexity Analysis

Both Phase I and Phase II have a time complexity of O(n logn). Phase
I uses an R-tree of existing samples to perform efficient overlap test,
while Phase II builds an R-tree for each zoom level for fast nearest
neighbor queries. Currently, AutoDD has a single-node implemen-
tation of Phase I and Phase II. We plan to investigate parallelization
opportunities in order to fully fulfill G2-b.

5 CONCLUSION

In this paper, we presented the design of AutoDD, its current imple-
mentation and future plans. AutoDD employed a declarative model
that allowed easy specification of ZSV design choices from a large
design space. A two-phase sampling and aggregation algorithm was
devised to construct a hierarchy of zoom levels to automatically man-
age occlusion and clutter. AutoDD had been integrated with Kyrix to
achieve interactive response times on big datasets.
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