
High-Dimensional Scientific Data Exploration via Cinema

Jonathan Woodring, James P. Ahrens, John Patchett, Cameron Tauxe, and David H. Rogers

Fig. 1. A parallel coordinates-based viewer that allows users to interactively explore large-scale scientific data sets through imagery, by
brushing-and-linking across a high-dimensional parameter space. This implementation is a Cinema viewer that visualizes the new
Dietrich specification. Cinema Dietrich describes scientific data as relational data sets (aka structural data, aka tables) with a simple,
easy-to-use Comma Separated Values (CSV) format. It is extensibile via additional information (schema meta-data) in JavaScript
Object Notation (JSON) for describing complex Cinema use cases.

Abstract—Large-scale scientific simulations and experiments generate enormous volumes of data. Data analytics may become a
bottleneck to scientific discovery without scalable tools for interactive exploration. Cinema was developed as a way to overcome hurdles
by providing an exploratory, image database approach for analyzing large scientific data sets. In the following, we present several
new methods for Cinema: 1) a structured data model that lends itself to querying and database support, 2) support for arbitrary data
products beyond images, and 3) parameter exploration through high-dimensional visualization. These changes enrich the types of
exporatory visualizations and discoveries that are naturally supported by Cinema-style analyses, further enabling data-driven science.

Index Terms—Cinema, high-dimensional data, databases, structural data, parallel coordinates, in situ, parameter exploration, image
databases, interactive exploration, big data, exascale supercomputing

1 INTRODUCTION

Cinema [3] is a scalable approach for providing interactive, exploratory
visualization and analysis for extreme-scale scientific data sets. In the
following, we describe several new methods, extending Cinema-based
analytics: 1) a structured data model that lends itself to querying and
database support, 2) support for arbitrary data products beyond images,
and 3) parameter exploration through high-dimensional visualization.

Extreme-scale simulations and experiments [1, 2, 4, 10, 19] are lead-
ing the charge towards high-fidelity, data-driven scientific discovery.
Analysts are collecting, modeling, and visualizing large-scale data sets
to generate new insights. This entirely depends on having scalable data
analytics, otherwise, discoveries will be severely bottlenecked by the
rate that analysts can gain insights from their data.

Due to I/O constraints, large-scale simulations are increasingly mov-
ing towards in situ analytics to deal with limitations in data move-
ment [5, 6]. While in situ methods are able to deal with the CPU to
I/O impedance mismatch, it limits the variety of exploratory analysis
that can be done during post-processing visualization. The types and

• J. Woodring, J. P. Ahrens, J. Patchett, and D. H. Rogers are with the Los
Alamos National Laboratory. E-mail: woodring@lanl.gov,
ahrens@lanl.gov, patchett@lanl.gov, and dhr@lanl.gov.

• C. Tauxe is with the Los Alamos National Laboratory and the New Mexico
State University. Email: camerontauxe@lanl.gov.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

number of data products are usually decided upon in advance of a
simulation run, which can lead to biases in analysis [13].

Cinema was developed as a way to mitigate this limitation by in-
troducing exploratory analysis to an in situ workflow. It achieves this
by generating a database of images via rendering in situ visualizations
of a simulation. The image data set samples the high-dimensional
parameter space of visualization operations, such as camera position
or isosurface values. Through sampling the visualization operation pa-
rameter space for an exascale data set (order of 1018 values), it can be
reduced to gigascale or terascale (109 or 1012 scale data, respectively),
and still provide high-impact interactivity: a large-scale simulation
run will generate 1,000s of megascale images that can be explored in
post-processing.

In the research, development, and production use of Cinema, we
observe several scenarios that lead to new capabilities that capture more
scientific data analysis use cases. We describe these new extensions
to Cinema, its data description, and example viewer implementations
with scientific data sets.

2 RELATED WORK

Cinema is a novel framework for visualizing large-scale scientific data
sets, as described by Ahrens et al. [3]. Like Tikhonova et al. [23], it uses
image-based techniques to scale down massive data sets to interactive,
explorable data sets. Recently, Larsen et al. [11] modeled the costs for
in situ generation of imagery, which is important for measuring the
performance of Cinema and image-based analysis workflows.

Our new Cinema-based techniques utilize database and query-style
visualizations for scientific datasets. In particular, visual analytics
and information visualization have a long, rich history of database



and structured data analytics [7, 26]. For scientific data, there have
been several different methods for bringing databases into visualization
and analysis. Notable is SciDB [16], where Stonebraker et al. have
developed databases geared specifically towards scientific analysis
workflows. Raddick et al. [21] describe the usage and hosting of
the Sloan Digital Sky Survey data on the web and scientific analysis
performed with database technology.

In the database model for scientific visualization, there is a need for
fast-query and indexing capabilities, due to the scale of datasets and the
ubiquity of scalar, floating-point data. In particular, bitmap indexing
has been a focal point of research for querying scientific data. Gosink
et al. [9] describe indexing HDF5, a structured data file format for
scientific data, with bitmap indexing methods. Similarly, Reubel [20]
et al. describe query-based visualization and analysis methods using
bitmap indexing technology on scientific data.

With databases and query functionality, visualization and analysis
systems can be built to utilize these capabilities. Planthaber et al.
describe EarthDB [14], a scalable earth visualization system built on
top of SciDB. Su et al. [22] describe doing correlation and statistical
analytics on scientific data sets indexed by bitmap indexing. Databases
are able to support high-dimensional analytics and parameter studies, a
focal point for the new capabilities in Cinema moving to a relational
and database data model. In this area, ensemble and high-dimensional
analytics in scientific data have been studied by Potter et. al with
EnsembleVis [15] and Crossno et al. with Slycat [8].

3 PREVIOUS CINEMA WORK

Cinema is designed as a data description and format for interactive vi-
sualization of large-scale scientific data. Focusing on data specification
rather than one software implementation or API, Cinema provides the
ability to deliver many implementations: production quality software
and simultaneously allowing research software to continue. This is
because a data format specification allows various software implemen-
tations to have differing requirements, such as reliability (production)
vs. capability (research). For example, an in situ ParaView Catalyst
adapter (production software) can write a data set that the web-based
Cinema viewer (research and development software) can display.

In Cinema, we use Golden Age era actors as code names for data
specification documents. The first two data formats are documented in
the Cinema Astaire [17] and Cinema Chaplin [18] Specifications, found
at http://cinemascience.org/index.php/getting-started/ and summa-
rized in the following.

3.1 A Collection of Rendered Images
The Cinema Specification A, Astaire, was the first released specifica-
tion that described the storage format for: 1) a JSON meta-data file,
2) parameter values in the JSON, 3) a string format in the JSON, for
converting parameter values into image filenames, and 4) a collection of
images on disk. Parameters describe and enumerate a set of dimensions
and values for those dimensions. Parameter examples include visualiza-
tion operator dimensions: camera positions, isosurface values, slicing
parameters, color maps, etc., as well as simulation parameters: time
step and output variables. Parameter values are converted to an image
filename list by taking the Cartesian product of those dimensions and
converting them to a string with the format, creating a list of images.
That is, an in situ workload for creating an Astaire data set will generate
all possible combinations of parameter values to create output a set of
rendered images stored in PNG, JPEG, etc. on the file system.

{

"type": "simple", "version": 1.1,

"metadata": { "type": "parametric-image-stack" },

"name_pattern": "{phi}_{theta}.png",

"arguments": {

"phi": { "default": 0.0, "label": "phi (degrees)", "type": "range",

"values": [-90.0, 0.0, 90.0] },

"theta": { "default": 0.0, "label": "theta (degrees)", "type": "range",

"values": [-180, 0.0, 180.0] }

}

}

Fig. 2. JSON meta-data for a simple Cinema Specification A (Astaire)
database. It has two parameters, phi and theta, which describe PNG
images on disk with filename string format “{phi} {theta}.png”.

To describe the list of collected images in Astaire, parameters, pa-
rameter values, and the string format are recorded in a JavaScript Object
Notation (JSON) file. In Figure 2, we show the JSON for a common use
case in Cinema, describing the phi and theta camera dimensions (pa-
rameters) for an orbiting camera. These parameters would be defined
with their valid values, like in our example, -90, 0, and 90 (degrees)
for phi and -180, 0, and -180 (degrees) for theta. Given the format
string, “{phi} {theta}.png” (Python-style string formatting), output
images are described by taking the Cartesian product of phi and theta,
and generating image filenames with the value pairs using the format
string, some examples being: -90 -180.png, 0 0.png, 90 180.png, etc.

3.2 A Collection of Compositible Images
Cinema Specification C, Chaplin, was the second public release of a
Cinema specification, providing additions to Astaire. The first addition
describes floating point (“raw”) images and compositible image layers.
With this, scientific data sets may be rendered without a color transfer
function and saved as intensity or floating point images with z (depth)
buffers. This allows for both interactive coloring and layered rendering
in post-processing by Cinema viewers. It reduces the number potential
number of images that need to be saved during in situ rendering, saving
computation time, by moving the coloring and compositing into the
viewer process. Chaplin also provides the capability for describing
a sparse sampling of the parameter space, limiting the collection of
images. It does so by describing which parameter values are “valid”
conditionally upon other parameter values. For example, an isosurface
parameter value of 3.0 might only be valid when the rendered variable
parameter is “temperature.”

4 A DATABASE OF SCIENTIFIC DATA PRODUCTS

The newest Cinema Specification, D for Dietrich [24], uses a structural
data model, i.e., a relational table, to represent parameters and data
products: 1) a simple CSV database for describing data products and
parameters, 2) a collection of data products on disk indexed by the
CSV, and 3) an optional JSON file for describing advanced use cases.
This is different from previous specifications where output images were
implicitly indexed by string formatting parameter values into image
filenames. Dietrich completely supports the Astaire and Chaplin use
cases, where image filenames are represented by a column in a table.
Parameters are related data, where a row represents an relationship
between parameter values and image filenames.

Fig. 3. An example of a working scientist’s spreadsheet in Excel. Sci-
entists keep a record of their parameters and data products, which is
similar to a Cinema database.

There are several reasons for moving to an explicit, relational data
(structural, table) model in Dietrich:

1. Scientific spreadsheets and parameter exploration – Scientists
already use spreadsheets in their workflow, and it is quite common
for them to use them to record their work and data products, like
in Figure 3. With Dietrich-based Cinema viewers, we are able
to directly visualize these data sets that scientists already have
in their possession. Many scientists perform parameter studies
that consist of non-uniformly sampled data in a parameter space,
which are described in these spreadsheets.

2. Comma Separated Values (CSV) file format – Structured data
can be represented by CSV that is a more universal data format
than JSON. CSV is easier to understand and implement by readers,



writers, and end users, providing a fast-path to adoption and on-
ramp to Cinema. Furthermore, it is likely that a scientist already
uses CSV (or CSV-like) data sets in their workflow.

3. Arbitrary image file paths – Astaire and Chaplin were designed
around generating databases of images and viewers for exploring
those images. Image filenames were restricted by a string format,
mapping parameter values to filename paths. In Dietrich, this is
relaxed as a filename can be any POSIX pathname or URI, as
filenames are columns in the table, allowing a broader range of
file storage options and locations.

4. Arbitrary data types and products – Like with arbitrary file-
names, Dietrich is able to easily support visualizing arbitrary data
types other than images. For example, Astaire and Chaplin were
restricted to visualizing images. To visualize plots, it required pre-
rendering them as images. In Dietrich, the data used to create the
plots can be directly represented as column data in the CSV. This
allows the data to be interactively plotted, rather than requiring
pre-rendered images.

5. Output to input queries – Astaire and Chaplin treat parameters
as input values that are mapped into output images. Therefore,
exploration is generally performed by searching the input param-
eter space to find the corresponding output images. To do output
to input exploration (searches on image data to parameter values),
it requires parsing the image filename based on the image file-
name string formatting. Dietrich is able to support these types
of “output to input” explorations in a natural way, due to its re-
lational data model, because “input” or “output” are just labels
on columns. As such, any dimension (parameter) can be part of a
query and return results for any other dimension, regardless if it
is an input or output.

6. Relational semantics and databases – Related to the previous
point, it is easy to represent any number of columns as the result
of a query (i.e., joins and projections). Also, a rich set of relational
data semantics and database support can be brought to bear, such
as indexing and query processing. For example in our Dietrich
query-based viewer, Cinema CSV data is internally represented by
a SQLite database, providing the majority of SQL functionality.

7. Sparse and biased sampling of parameter spaces – In Astaire,
the visualization operator space is sampled by the Cartesian prod-
uct of parameter values to generate the list of images. Chaplin
provides sparse sampling in a limited way, by describing a set
of “constraints” per dimension that have to be programmatically
tested and does not easily support random sampling. In Dietrich
due to its relational model, samples can be arbitrary points in a
high-dimensional space (parameter values to data product rela-
tionships) due to explicit row data. This provides the capability to
represent a sparse, non-uniform sampling of any parameter space,
supporting visualization of scientific parameter studies, like in
Figures 1, 3, and 6.

In particular with Astaire and Chaplin, all “useful” information is
only contained in the images. This is due to the parameter sampling
process, where the Cartesian product of dimensions will decorrelate
parameter values and the information across dimensions. With Dietrich,
we can describe parameter correlations through a biased sampling of
a high-dimensional parameter space. This assumes that the parameter
space is purposely sampled (i.e., during the in situ data generation step)
in a data-driven manner, such as importance sampling [12].

4.1 Simple Database Format
In previous versions of the Cinema Specifications, the parameter values
and string format meta-data are described in a JSON file. With Dietrich,
we use Comma Separated Values (CSV) to describe this same set of
meta-data as a table. Each parameter is a column in the CSV, including
the image filenames, such that each row describes the relationship
between parameters and image filenames. Figure 4 shows an example
of Dietrich CSV file, which describes the same database as Figure
2. We use CSV for Cinema Dietrich, rather than picking a database
implementation, owing to our previous focus on both specification

phi, theta, FILE
-90, -180, -90 -180.png
-90, 0, -90 0.png
-90, 180, -90 180.png
0, -180, 0 -180.png
0, 0, 0 0.png
0, 180, 0 180.png

90, -180, 90 -180.png
90, 0, 90 0.png
90, 180, 90 180.png

Fig. 4. A Cinema Speficiation D, Dietrich, database stored in CSV format.
This is the same data set as Figure 2, showing parameter value to image
filename relationships as explicit rows.

and format instead of software implementation. Also, there is the
added difficulty of running database servers in a supercomputing/high-
performance computing (HPC) environment, where many of our end
users of Cinema will compute their data. Additionally, they may already
have CSV files or other tabular data (such as spreadsheets) that can be
easily converted to CSV and read by Cinema. Finally, CSV is easy to
read, write, share with other tools, and ingest into database backends
for viewer implementations (independent of the data format).

Our design focus for Cinema is on ease-of-use, like our previous
specifications and currently, we are not concerned about the scalability
of CSV. We expect much of “heavy-weight” data products, such as
images, are stored in external files on the file system. In the current
specification, we denote that a column represents external file data,
like images, with a special header label (i.e., FILE) and the file type
is determined by filename extension. This is similar to our earlier
Cinema JSON format, where the CSV acts as a way to index high-
dimensional parameter values to data products. Some data, like data
columns intended to be shown in plots, will be stored in the CSV for
visual interactivity. In the future if scalability becomes an issue, we can
move to a different implementation updating the specification.

4.1.1 Optional Schema for Complex Use Cases

We expect that the CSV will cover the majority of Cinema use cases,
allowing for easy initial adoption and visualization of scientific data
sets. A positive and negative of CSV is its simplicity. Dietrich extends
it to support files, through the FILE keyword in the CSV header. The
simplicity makes it difficult to describe advanced Cinema use cases
and data types. This is important to describe complex data columns to
viewers because an implementation might want to create specialized
interfaces, such as a trackball interface if it understands that a column
represents camera data.

"temperature-column": {

"type": "scalar", "io": "output", "label": "temperature",

"arguments": {

"value": "temp", "range": [-10.0, 30.0],

"interpolate": "linear", "units": "Celcius" }

}

Fig. 5. A portion of a Dietrich JSON meta-data for scalar columns.

For these advanced use cases, we provide a path to extend the CSV
stored in an additional, optional meta-data JSON file. In Chaplin,
we have specialized JSON keys that describe Cinema use cases, like
cameras, image layers, and raw image formats. In Dietrich, we provide
a specification describing these data, a flexible JSON meta-data format
for semantic information or a schema on top of the CSV. A snippet
of a JSON meta-data for describing continous, scalar data is shown in
Figure 5. JSON has multiple benefits as a meta-data descriptor to the
CSV: it is extensible by the way of adding new key-value pairs to the
specification, has many available parsers for various languages, and
JSON Schema [25] provides a way to validate the meta-data.

This is in contrast to extending the set of special keywords for CSV
column headers (like FILE). The main reason for not using additional
header keywords is that they are insufficient to capture and communi-
cate complex use cases, like image layers in Chaplin. In a simple use
case, if a parameter (column) is an input that implies viewers ought
have a control, like a slider. While outputs imply columns should be the
visual result of manipulating controls and/or querying the CSV. Thus,
there is a need to communicate intent beyond simple machine types.



4.2 Viewers (User Interaction and Exploration)
Given our new relational data model for Cinema Dietrich, we will
discuss two viewers that were created around these data models: a
parallel coordinates-style viewer and a query-based viewer.

4.2.1 Parallel Coordinates Viewer

In Astaire and Chaplin, the visualization parameter space was fully
enumerated, as the Cartesian product over the dimensions, creating a
dense sampling of the parameter space. This meant that viewers pri-
marily create user interfaces using sliders and/or drop-downs, because
any possible configuration would result in a valid parameter combi-
nation and output image selection. This was intended, as most of the
initial Cinema use cases were built around densely sampling a camera
parameter space around a visualized object to provide smooth, visual
interactivity via pre-rendered images.

By moving to a relational data model in Dietrich, this opened up
the possibility of sparse sampling of parameter spaces. This creates
a user interface design problem for parameter selection and image
exploration. We were unable to easily use sliders as a way to explore
the parameter space, as with Astaire and Chaplin. A combination of
sliders, in a sparse representation, may not select a valid row in the
database. To solve this problem, we initially considered a user interface
where the sliders would snap to the “nearest valid row” in the database,
i.e., nearest neighbor search in one dimension, upon moving one of the
sliders. Sliders could get locked into a local-minima of the parameter
space, and it is unintuitive, as the other sliders would be moving as the
user manipulated one of the dimensions (sliders).

To solve this problem, we developed a parallel coordinates explorer
as a way to interact and select rows in a Cinema database, as shown in
Figure 1. This solved our user interface problem, as now end users can
select individual rows by selecting a point (line segment) or ranges of
rows by brushing on an axis (dimension). This essentially creates pairs
of slider widgets (min-max range pairs for each parameter by brushing
on a dimension) with benefits of parallel coordinate visualization:

1. Parameter space visualization – With the capability to sparsely
and importance sample the parameter space, we can provide
information about the values and correlations between dimensions
in the high-dimensional space. Parallel coordinates provide a
way to see all of the dimensions, database rows, and parameter
relationships to outputs, simultaneously. In particular, the data
that are shown in the previous figures are from scientific parameter
studies where the parameter space is non-uniformly sampled, with
multiple inputs and outputs.

2. Brushing and linking – Range queries on dimensions are ap-
plied through brushing and linking on each dimension, updating
the selected rows and output images immediately. Future Cinema
viewer implementations may include a scatterplot matrix or in-
terleaved scatterplots between parallel coordinate axes, allowing
users to see bi-variate relationships that are easier to see in 2D,
like non-linear relationships.

4.2.2 Query-based Viewer

By having a structured data model, we can directly apply relational-
style queries (SQL in our implementation) on the Cinema parameter
space to explore images and data, as shown in Figure 6 with a six-
dimensional data set. This is similar to the visual range queries that we
are able to perform via the previous parallel coordinates viewer, but
instead exploration is performed with SELECT and WHERE statements.
To execute the queries, we used SQLite to internally back the CSV data
and parse SQL code.

For example, we can easily load two separate Dietrich databases,
combine them together with a join on a common parameter, and saving
the result as a new view. We used this workflow on the data in Figure
6 to combine two Cinema data sets into one explorable database. In
our example, one data set has image data indexed by time, while the
other has scalar data with time, tracer, absorption, scattering, and
multigroup. Combining them by an inner join on time, we can show

Fig. 6. Examples of performing exploration with the query-based Cinema
viewer. The top image shows all of the data in the database, including
images. In the bottom-left image, we show the result of the query on the
data set that does not result in imagery. In the bottom-right image, we
use the JSON meta-data to describe that the same query can be plotted.

the corresponding images data with the scalar data, as shown in the top
image of Figure 6.

In the bottom-left image of Figure 6, we show the ease of selecting
and visualizing two parameters (dimensions) based on queries using
two of the other parameters. In this case, we select multigroup and
absorption, such that time equals 10 and tracer equals 42. By default,
the viewer implementation will show query results as a table, without
additional semantic knowledge, but we can do more. Utilizing the
JSON meta-data for describing columns in the CSV, we annotate that
multigroup and absorption are continuous scalar data. With this knowl-
edge, the viewer can understand that the query is returning two columns
of scalar data, and therefore, can line plot it. The bottom-right image
of Figure 6 shows the result, where the viewer is using the semantic
knowledge provided by the JSON meta-data to line plot the query result
instead of showing it as a table.

5 DISCUSSION ON MACHINE LEARNING IN CINEMA

Currently, we have several papers in preparation that study the use
of machine learning and statistical learning techniques for Cinema
databases. What is important about these unpublished works, in general,
is that automated data modeling techniques augment and accelerate
human-in-the loop data exploration. With Cinema’s relational data
model, we can easily augment an existing scientific database by writing
machine learning algorithms as unattended Cinema readers and writers.
For example, the areas that we are currently exploring is using ma-
chine learning to continuously apply “feature finding” (classification)
methods to augment and update an existing Cinema database over time.

Essentially, machine and statistical learning allows Cinema datasets
to become “living” and “growing,” as they stop being static through
automatic computer data modelling. With our relational data model
and continually running learning algorithms, viewers will automati-
cally pick up any new parameters (columns) that have been added to
a Cinema database, providing new user interface controls. In essence,
automatic data modelling can provide “dimensionality reduction”, re-
ducing high-dimensional data to fewer dimensions. Cinema can then
automatically visualize these new parameters (dimensions) through
sliders, if reduced to 1D, or using our new parallel coordinates viewer.

6 CONCLUSION

We have demonstrated the next advances in Cinema-style scientific
visualization and analysis utilizing a new relational data model. This
provides many benefits: ease of high-dimensional parameter description
and exploration, supporting high-dimensional visualization like parallel
coordinates, database and query support, and the ability to visualize
and analyze many existing scientific data sets.



REFERENCES

[1] S. Ahern, A. Shoshani, and K.-L. Ma. Scientific Discovery at the Ex-
ascale. Report from the DOE ASCR 2011 Workshop on Exascale Data
Management, Analysis, and Visualization, DOE Office of Science ASCR,
Houston, TX, Sept. 2011.

[2] J. Ahrens, B. Hendrickson, G. Long, S. Miller, R. Ross, and D. Williams.
Data Intensive Science in the Department of Energy. Technical Report
LA-UR-10-07088, Los Alamos National Laboratory, Oct. 2010.

[3] J. Ahrens, S. Jourdain, P. OLeary, J. Patchett, D. H. Rogers, and M. Pe-
tersen. An Image-Based Approach to Extreme Scale in Situ Visualization
and Analysis. In SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 424–434, Nov. 2014.

[4] J. Ahrens, D. Rogers, and B. Springmeyer. Visualization and Data Anal-
ysis at the Exascale. White Paper for the National Nuclear Security
Administration (NNSA) Accelerated Strategic Computing (ASC) Exas-
cale Environment Planning Process LLNL-TR-474731, DOE NNSA ASC,
2011.

[5] U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. E.
Jansen, B. Loring, Z. Lukic, S. Menon, D. Morozov, P. O’Leary, R. Ranjan,
M. Rasquin, C. P. Stone, V. Vishwanath, G. H. Weber, B. Whitlock,
M. Wolf, K. J. Wu, and E. W. Bethel. Performance analysis, design
considerations, and applications of extreme-scale in situ infrastructures.
In SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 921–932, Nov 2016.

[6] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel.
In situ methods, infrastructures, and applications on high performance
computing platforms. Computer Graphics Forum, 35(3):577–597, 2016.

[7] C. Chabot. Demystifying Visual Analytics. IEEE Computer Graphics and
Applications, 29(2):84–87, Mar. 2009.

[8] P. J. Crossno, T. M. Shead, M. A. Sielicki, W. L. Hunt, S. Martin, and
M.-Y. Hsieh. Slycat Ensemble Analysis of Electrical Circuit Simulations.
In Topological and Statistical Methods for Complex Data, Mathematics
and Visualization, pages 279–294. Springer, Berlin, Heidelberg, 2015.
DOI: 10.1007/978-3-662-44900-4 16.

[9] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel. HDF5-
FastQuery: Accelerating Complex Queries on HDF Datasets using Fast
Bitmap Indices. In 18th International Conference on Scientific and Statis-
tical Database Management (SSDBM’06), pages 149–158, 2006.

[10] C. Johnson and R. Ross. Visualization and Knowledge Discovery: Report
from the DOE/ASCR Workshop on Visual Analysis and Data Exploration
at Extreme Scale. Technical report, Department of Energy Office of
Science ASCR, Oct. 2007.

[11] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith, and H. Childs.
Performance Modeling of in Situ Rendering. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’16, pages 24:1–24:12, Piscataway, NJ, USA,
2016. IEEE Press.

[12] B. Nouanesengsy, J. Woodring, J. Patchett, K. Myers, and J. Ahrens. ADR
visualization: A generalized framework for ranking large-scale scientific
data using Analysis-Driven Refinement. In 2014 IEEE 4th Symposium on
Large Data Analysis and Visualization (LDAV), pages 43–50, Nov. 2014.

[13] J. M. Patchett, B. Nouanesengsy, G. Gisler, J. Ahrens, and H. Hagen. In
Situ and Post Processing Workflows for Asteroid Ablation Studies. 2017.

[14] G. Planthaber, M. Stonebraker, and J. Frew. EarthDB: Scalable Analysis of
MODIS Data Using SciDB. In Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, BigSpatial
’12, pages 11–19, New York, NY, USA, 2012. ACM.

[15] K. Potter, A. Wilson, P. T. Bremer, D. Williams, C. Doutriaux, V. Pascucci,
and C. R. Johnson. Ensemble-Vis: A Framework for the Statistical Visu-
alization of Ensemble Data. In 2009 IEEE International Conference on
Data Mining Workshops, pages 233–240, Dec. 2009.

[16] M. J. Raddick, A. R. Thakar, A. S. Szalay, and R. D. C. Santos. Ten Years
of SkyServer I: Tracking Web and SQL e-Science Usage. Computing in
Science Engineering, 16(4):22–31, July 2014.

[17] D. Rogers, D. DeMarle, J. Ahrens, and J. Patchett. Cinema Simple
Database Specification v1.1. Technical Report LA-UR-15-20572, Los
Alamos National Laboratory, 2014.

[18] D. Rogers, J. Woodring, J. Patchett, D. DeMarle, and B. Geveci. Cinema
Database Specification Chaplin Release v1.0. Technical Report LA-UR-
17-20645, Los Alamos National Laboratory, 2017.

[19] R. Rosner and A. S. on Exascale Computing. The Opportunities and

Challenges of Exascale Computing. Summary Report of the Advanced
Scientific Computing Advisory Committee (ASCAC) Subcommittee, DOE
Office of Science ASCR, Nov. 2010.

[20] O. Ruebel, E. W. Bethel, M. Prabhat, and K. Wu. Query-Driven Visu-
alization and Analysis. Technical Report LBNL-6323E, Ernest Orlando
Lawrence Berkeley National Laboratory, Berkeley, CA (US), Nov. 2012.
DOI: 10.1201/b12985-10.

[21] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database
Management System for Applications with Complex Analytics. Comput-
ing in Science Engineering, 15(3):54–62, May 2013.

[22] Y. Su, G. Agrawal, J. Woodring, A. Biswas, and H.-W. Shen. Supporting
Correlation Analysis on Scientific Datasets in Parallel and Distributed
Settings. In Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, pages 191–202, New
York, NY, USA, 2014. ACM.

[23] A. Tikhonova, H. Yu, C. D. Correa, J. H. Chen, and K.-L. Ma. A Preview
and Exploratory Technique for Large-scale Scientific Simulations. In
Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization, EGPGV ’11, pages 111–120, Aire-la-Ville, Switzerland,
Switzerland, 2011. Eurographics Association.

[24] J. Woodring, D. Rogers, J. Ahrens, and J. Patchett. Cinema Database
Specification Dietrich Release v1.0. Technical Report LA-UR-17-25072,
Los Alamos National Laboratory, 2017.

[25] A. Wright. JSON Schema: A Media Type for Describing JSON Docu-
ments. http://json-schema.org/latest/json-schema-core.html, Apr. 2017.

[26] L. Zhang, A. Stoffel, M. Behrisch, S. Mittelstadt, T. Schreck, R. Pompl,
S. Weber, H. Last, and D. Keim. Visual analytics for the big data era; A
comparative review of state-of-the-art commercial systems. In 2012 IEEE
Conference on Visual Analytics Science and Technology (VAST), pages
173–182, Oct. 2012.


	Introduction
	Related Work
	Previous Cinema Work
	A Collection of Rendered Images
	A Collection of Compositible Images

	A Database of Scientific Data Products
	Simple Database Format
	Optional Schema for Complex Use Cases

	Viewers (User Interaction and Exploration)
	Parallel Coordinates Viewer
	Query-based Viewer


	Discussion on Machine Learning in Cinema
	Conclusion

