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Abstract—A primary aim of visual analytics is to provide end-users interactive and scalable environments to facilitate their decision
making tasks. Researchers have often utilized several server-client solutions to support interactive data exploration (e.g., building
the data cube, parallelizing data processing). However, these solutions can suffer from scalability issues especially in the absence of
adequate computation functionality provided by servers. Organizational policies can also prohibit the transfer of data to external data
servers because of security or budgetary concerns; thereby, severely limiting the capability of the visual analytic systems. Therefore,
in this paper, we propose an interactive client-based visual analytics framework for large-scale spatiotemporal data. The proposed
framework follows a sampling based incremental visual analysis approach to sustain the real-time responsiveness, meanwhile, with
affordable computation resources in a client machine. General sampling methods [34] preprocess the entire dataset to build data
indexing, which can bring the client unaffordable computation overhead. Instead, our framework proposes a novel data management
model, using the spatiotemporal clustering pattern to predictively organize and sample data based on historical data acquisition
activities. We demonstrate the capabilities and usefulness of our framework by applying it on crime data and twitter data. We also

conduct several experimental evaluations to determine the efficacy of our framework.

Index Terms—Large spatiotemporal data, data management, incremental visualization

1 INTRODUCTION

In the big data era, interactive visual analytic environments often re-
quire advanced computing platforms or advanced client-server architec-
tures with sufficient computing abilities to enable interactive analysis.
These solutions typically offload the expensive computational tasks to
a high-performance server or a distributed computing platform (e.g.,
Hadoop), while leaving the client-side application to mainly focus on
user interactions and visual representations.

Unfortunately, in many businesses and local governmental organiza-
tions, policies or budgetary concerns may prevent deployment of such
solutions, or the transfer of data to external servers [21,31], thereby,
only allowing the server to provide data, and requiring the client to
take care of all the computational workload. However, for data data,
typical client machines probably lack adequate computation resources
to process the entire data, let alone providing real-time responsiveness
to end users.

In order to address this architectural constraint, we propose an in-
cremental visual analytics framework that enables interactive analysis
of large spatiotemporal data under these client-server constraints: (1)
a fixed server that only serves as a data provider (e.g., a relational
database), and (2) a local client-side system (e.g., desktop, web-based)
subject to limited computational and memory resources. In our frame-
work, we utilize a sophisticated spatiotemporal data structure suitable
for the client to progressively query meaningful samples from the
database on the server. The approximate visualizations are created
in the client based on these samples, which are continuously updated
since the client keeps fetching and applying new samples until reaching
100% accuracy or when canceled by the end user. The entire workflow
is well coordinated and provides real-time visual representations to the
users. Furthermore, it can be completed by a typical client machine on

* Guizhen Wang, Abish Malik, Chittayong Surakitbanharn, Shehzad Afzal,
Sigiao Chen, David Wiszowaty and David S. Ebert are from Purdue
University. E-mail: {wang1908|amalik|csurakit|safzal|chenl1722|
dwiszowalebertd} @purdue.edu.

José Florencio de Queiroz Neto is from Federal University of Ceara. Email:
Sflorencio@lia.ufc.br

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

account of the significantly reduced computation latency and resource
consumption to process a few data samples. Existing spatiotemporal
data sampling methods (e.g., STORM [34] and TrajStore [10]) cannot
always be completed by a client machine, for the lengthy computation
time and large volume of computer resource consumption to index all
the data. Instead, our novel method is to propose a predictive data
management strategy to index based on the spatiotemporal patterns dis-
covered from previous data acquisition, within the client computation
affordability, and support data sampling progressively from the server.
Specifically, our work contributes the following:

¢ An incremental visual analytics environment for large spatiotem-
poral datasets that supports interactive exploration for environ-
ments where the visual analytic software runs on an average client
machine with a server constrained to only provide data query.

* A predictive data management model that supports incremental
sampling from indeterminate data distribution, effectively guar-
anteeing each incremental cycle not only obtains representative
samples but also adapts to the computation capability of the client
machine.

¢ A user-driven data acquisition scheme that prioritizes data fetch-
ing based on the spatiotemporal range of users’ interest and
minimize data acquisition between the server and client through
reusing client memory cache and disk cache.

2 RELATED WORK

Researchers have proposed various techniques to achieve interactive
exploration of big data. Computational latencies can be remarkably re-
duced through parallelizing the data processing workflow, e.g., MapRe-
duce [11] and imMens [23]. Data aggregation can save query time
through indexing the entire data based on the specification of analytical
tasks, e.g, techniques including imMens [23], Nanocubes [22], and
Hashedcubes [3] can speed up the data retrieval performance through
aggregation by spatial, temporal or categorical attributes. Data prefetch-
ing techniques [4,7] can effectively shorten latencies as well through
predicting user behaviors and fetching data in advance.

To reduce the demand on computational resources, techniques have
been explored to minimize resource consumption. For example, out-of-
core precomputation that divides and processes data one block at a time,
can address memory limitations and advance scientific visualization ( [6,
8,9,16,33]). A combination of in-memory indexing and disk-resident
techniques have also been proposed to mitigate memory shortage. For



example, EdiFlow [5] is an interactive workflow for visual analysis
with DBMS as the temporary storage of computation results.

Different from the aforementioned techniques to process all the data
and generate accurate results, sampling-based approximate data query
techniques (e.g., Sample+Seek [12] and STORM [34]) can use a small
ratio of samples to generate approximate results. Many research ef-
forts have been made to help end users utilize approximate results to
make decisions [14,15,19,28,29]. To reduce the high computational
workload to sample spatiotemporal data, our work aims in the architec-
tural constraint environment having a client with limited computation
capabilities and a server reluctant to be customized, and proposes a
framework to allow a typical client machine responsible for incremental
spatiotemporal visual analytics.

3 FRAMEWORK OVERVIEW
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Fig. 1: Framework components and workflow between the client side
and the remote server.

Our interactive client-based visual analytics framework can be de-
composed into three main components, the client-side user interface,
remote data servers, and the client-side data management model (intro-
duced in Section 4), seen in Figure 1. In what follows, we explain the
key technical ideas of these three components.

The user interface is a multiview visual interface that supports
user interactions and provides incremental visual feedback to users.
After users issue a new query, the user interface will send the user-
specific spatiotemporal range to the data management model, and in
each subsequent cycle, receive data samples from the data management
model, filter data based on filtering predicates, update the visualization,
and show the data loading percentage, a value calculated by the data
management model to denote the ratio of nodes that have been sampled,
to tell users how reliable the approximate results can be. Users can
either wait for more accurate results, suspend incremental updates, or
stop the incremental updates when the approximate data visualization
is accurate enough for their tasks. As an example, Figure 2 illustrates
how a heatmap progressively updates.

Data servers can be any platform that hosts the entire dataset and
allows clients to fetch data. Despite the architectural constraints to
prevent deploying customized functions, databases on the server side
can host the entire dataset and provide the function to retrieve data
based on the spatiotemporal data. For example, popular spatiotemporal
indexing techniques (e.g., R-Tree [18] and data cube techniques [17,
30]), widely provided in commercial database systems, can efficiently
reduce the data query time. Therefore, in our framework, we simply
assume that the data server query time is proportional to the number of
data records requested by the client, as is the data transfer time from
the server to the client. As long as the client retrieves a smaller number
of points from the server, the latency between sending the request and
receiving the data can be reduced to an appropriate value.

The data management model is associated with a single client ap-
plication, consisiting of three components: the data sampling module,
the memory controller, and the disk manager. The data sampling mod-
ule, introduced in Section 4, incrementally fetches data from the server
in accordance with the sample size specified by an upper bound for
interactive performance. The memory controller monitors, predicts,
and swaps in-memory data to the disk when necessary. When the appli-
cation launches, memory will be consumed for initialization, including
views in the user interface, modules in the data management model and
so on. After initialization, more client memory is gradually consumed
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Fig. 2: Incremental visual updates of the heatmap using the kernel
density estimation technique [27] to show the distribution of tweets in
Chicago (introduced in Section 5) at different stages of the data loading
process, indicated by the number below the image.

for loading new data, but the memory cost of the user interface will re-
main almost constant despite incrementally accumulating data samples
for these visualizations. For example, the spatial heatmap in the system
initialization stage requires memory allocation for a grid to store the
spatial histogram. In the incremental data update, the user interface
only updates bin values in the grid, without allocating new memory.
To prevent the out-of-memory issue, the controller tracks the memory
utilization of each incremental update cycle and estimates the memory
usage in next cycle, since the data sampling module can predict the
number of points in a node that is going to be fetched from the server.
That information can be applied to coarsely calculate the memory cost
of the next cycle. If the memory is predicted to be insufficient for
the next cycle, one in-memory data node that has not been recently
accessed is chosen based on the LRU rule [32] to be swapped to the
disk cache. The disk manager organizes the data in the disk, stores
data swapped out from the memory, and schedules disk data read/write
operations.

To minimize data acquisition from the server side, our framework
supports user-driven data acquisition: only loading data of user interest
into the client side, since the data management model only samples
nodes whose spatiotemporal ranges overlap the user query range, and
avoiding data that are not requested by user interactions. The other
acquisition minimization method is to reuse the data that have been
obtained from the server side to the client side, including memory cache
and disk cache.

4 INCREMENTAL SPATIOTEMPORAL DATA SAMPLING UNDER
ARCHITECTURAL CONSTRAINTS

This section describes our client-based spatiotemporal data sampling
model design for constrained environments. In our framework, the
model is responsible for maintaining a spatiotemporal index of the
data in a predictive way, and conducting incremental data sampling to
ensure visually approximate results.

4.1 Client-side Data Organization
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Fig. 3: Illustration of client-side data organization using the two-level
indexing.

The proposed data management model organizes data with a two-
level organization shown in Figure 3. The first level is the temporal
indexing, dividing the entire temporal range into equal bins (e.g., one
month). The second level uses spatial indexing to organize data within
the same temporal bin into a quadtree [24,25] based on their spatial
distribution. Every node in the quad tree covers a rectangular spatial
range, with only leaf nodes having data, and an upper bound of the
number of points that one leaf node could contain at most - the frame-
work takes care of this limit, equally dividing a node into four children



when it is going to have more points than the upper bound. Thus, the
spatial space decomposition in the quadtree will follow the spatial data
density in its related temporal range: denser areas will have more nodes
and vice versa.

4.2 Spatiotemporal Data Sampling

Our sampling method incrementally samples nodes, in accordance with
the data distribution where denser areas can have a greater likelihood
of nodes being sampled. However, in the constrained environment, it is
infeasible to preprocess the entire data collection to determine the data
density distribution and build the index. Therefore, we incrementally
sample data from the server and refine the index based on data densities
determined from the historical sampling. We have developed a predic-
tive way to estimate data densities, refine the node organization and
further sample data in accordance with its actual statistical distribution.

The client-side data organization initially assumes that the data is
uniformly distributed in the spatiotemporal space, since the client side
does not have any information about the data distribution. Hence, the
client runs a server query to retrieve the total count of data and the
entire spatiotemporal range in the dataset. This information is used to
divide the time range equally into temporal bins, and to build, for each
temporal bin, a spatial quadtree.The quadtree is progressively built until
the leaf has fewer points than the upper-bound framework parameter.

After receiving a data request with specified spatial and temporal
ranges, the data management model incrementally samples the data
using the following steps:

1. Select all leaf nodes that spatiotemporally overlap with the speci-
fied ranges, and form a node set S

2. Randomly choose a node in the selected node set S

3. If the density of the node is unknown, estimate the data density
of the node, with possible adjusts in the quadtree in case of upper-
bound violation or merging the node and its three siblings into a
parent node in case of sparseness.

4. Fetch the data of the sampled node N from the server

5. Update the corresponding quadtree leaf with the exact number of
points

6. Send the data for visualization, and remove N from §
7. Repeat steps 2-6 until S is empty or canceled by end users

The data density estimation procedure in Step 3 is necessary be-
cause, sampling a node with unknown data densities actually has an
excessively large number of points, the cycle can take longer to fetch
data from the server and process the data on the client side, making
the client application unresponsive. Predicting the number of points in
anode Ny.qic; involves three steps. The first step is to collect nodes
in other temporal bins that have acquired data from the server and
have the same spatial range as N eqic;- Then, the number of points in
Npredier 1s calculated using Equation 1. If predicted to have a larger
point number than the upper-bound, the node can be split into four
children. If predicted to be smaller than the upper bound, the father
node will be estimated to see whether the four children nodes can be
merged as long as the predicted data size is no more than the upper
bound. The last step is to get the final node for sampling. If the original
node is split, a child is randomly selected; if the node is merged, its
father is selected; otherwise, the node itself is finally selected.
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where 7 is the total number of nodes that have the same spatial range
with Npqic; and know their data densities.

pi 1s the number of points in the i-th node.

(1

5 EVALUATION AND RESULTS

In this section, we conducted experiments to verify the effectiveness
of our proposed framework. The client is a 32-bit desktop application
implemented on the .NET framework, with one thread for the user
interface (Figure 4) and the other for the data management model. The
client connects a MySQL database hosted by a data server in the same
network domain and utilizes SQLite [2] to store data in the disk. We
set the upper bound of a node to be 4096, a multiple of a Windows disk
block size, 4KB. The data in the server side is grouped into multiple
tables with each table for one temporal bin. The test datasets included
two years of traffic incident reports for the state of Ohio, and six months
of Twitter data for the city of Chicago (Table 1). The temporal range is
evenly divided into multiple bins: one month for the osp datasets, and
one week for the tweet dataset. The map view was set to overview the
entire Ohio geospatial range for osp, and the entire Chicago geospatial
range for tweets. For the osp data, the experiment loaded all the data.
For the tweets, a specific temporal range from April 3 to May 9 in 2013,
nearly 1.7 million, was selected for experiment. The application was
launched with a clean disk cache, and the process was repeated five
times for each dataset. All experiments were conducted on a client
machine with an Intel(R) Xeon(R) E5-2630 CPU with twelve cores at
2.60GHz, 32GB main memory, and a 256GB solid state drive.

Fig. 4: The user interface of an implemented incremental spatiotem-
poral data visual analytics prototype. The left is the data filter panel,
and the right is a map view showing the spatial heatmap rendered with
OpenGL [1] and the bottom left of the map view displays the data
loading percentage.

Data | Description Size
os Ohio crime data from January 1,2012 | 3-2 million
P to December 31, 2013
Chicago Twitter data from April 1, o
tweet | 9013 to September 30, 2013 9.7 million

Table 1: Evaluated traffic incident reports and Twitter datasets.

Table 2 measured the latency in each cycle, including the node
sampling time, the server side query time, and data transfer time, which
averaged less than 500ms for all datasets. The low resulting transfer
time support the interactive analysis of end users.

Data Average time per cycle(ms) Total cycles
osp 456.8754 1915.8
tweets 407.3 4681

Table 2: Measurements of incremental visual updates in our prototype
for one incremental visual update, averaged in five trials.

Figure 5(a-c) measures the number of points fetched from the server
at each incremental cycle. Figure 5(a) shows the histogram of the
number of points fetched from the server averaged in the five trials. The



distribution of the osp data has a higher density around [1000, 3000],
and the tweet data is more concentrated with a higher density around
[0, 2000]. Figure 5(b) shows the number of points fetched per cycle in
one trial of the osp dataset. We can see that the value in the earlier 8%
cycles is sometimes significantly larger than the upper bound, 4096,
with the peak at 16,962, and in the subsequent cycles, going down to
around or below the upper bound. Figure 5(c) shows the number of
points fetched per cycle in one experiment of the tweet dataset. In this
case, the total points fetched per cycle is, most of the time, around or
below the upper bound, with only four examples in the first 50% cycles
being significantly larger than the upper bound.

Figure 5(d) uses Root-Mean-Square-Error (RMSE) [20] to measure
the accuracy between the approximate spatial data distribution per
incremental cycle and the final exact data distribution. A Kernel Density
Estimation (KDE) method [13] measured the spatial distribution, with
the spatial resolution of the 2D histogram to be 256 by 256 pixels. To
reduce the measure inaccuracy from the geospatial sparsity, we only
compare KDE values in denser areas defined as spatial bins with a KDE
value no less than 0.05 on a normalized scale of 0 to 1.We find that the
RMSE value starts around 0.15 in the first cycle, gradually decreases
with increased data sampling, and is reduced to 0.1 when 10% of the
dataset are sampled with the attribute-based sampling procedure.
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Fig. 5: Statistics of the experiment testing our proposed framework in
five trials. In (b-c), the x-axis indicates the cycle index.

6 DISCUSSION

Our work is motivated by the challenge one law enforcement agency
met to use our visual analytics system VALET [26] to interactively
analyze a large scale data. Subject to security policies, their servers
cannot be allowed to use, except database functions. Therefore, we
propose the incremental spatiotemporal visual analytics system intro-
duced in this paper to enable them to interactively explore data. Our
domain users expressed the concern that the solution cannot consume
a significant portion of the computer resources, since they need the
computer to process their other work as well, and thereby, we developed
a client-based application, and allow users to specify the amount of
computer memory dedicated to the system. Experiments in Section 5
have demonstrated the capability of our framework to assist end users
interactively explore data within the server limit.

The server query performance is vital to assure each cycle can be
completed in real time. In our experiment, the entire dataset in the
server side database was split into multiple tables, making one table for
each temporal bin. We tested that, in the same condition, with the entire
data being hosted within a single table, each server query increased by
about 400ms in the osp data.

There are two parameters in our proposed incremental spatiotempo-
ral data sampling method, the upper bound to specify the maximum
number of points a leaf node is allowed to have and the length of a
temporal bin. The upper bound of a node can impact the interactivity
of the framework. If it is set to a value inappropriately large, a cycle
can take an excessive time to retrieve and compute data. Therefore,
the value of the upper bound is decided with the concern of the system
responsiveness. Concerning the length of a temporal bin, the shorter
the length of the temporal bin, the more cycles the approximate visual-
ization takes. In our experiment, the total number of cycles for loading
the 1.7 million tweet data is twice of the 3.2 million osp crime incidents.
This difference happens even though the osp data is almost twice as
large as the size of the tweet data. The reason is that the temporal bin
is a week for the tweet and a month for the osp.

Results in Section 5 reveals that the spatial data distribution can have
an impact on the number of points fetched per cycle. The rightmost
picture in Figure 2 shows the exact spatial distribution of the tweet data,
and the heatmap in Figure 4 overviews the spatial distribution of the
osp data. We can see that the tweet data is more spatially concentrated
than the osp data, having a relatively high density only in the downtown
region. Therefore, in the data organization initialization stage, with the
uniform assumption, the majority of tweet nodes have a smaller number
of points than the upper bound, and osp has relatively fewer nodes below
the upper bound. That can explain the fact that in Figure 5(c), in the
first 10% cycles, the number of points fetched in the tweet is much
smaller than that of osp in Figure 5(b), since it is a high chance to
select nodes in the sparser area. However, for the osp, nodes in denser
area has a relatively greater chance to pick, and that is why, in its first
10% cycles, the number of points per cycle is sometimes larger than
the upper bound. Along the cycles proceed, the client can refine the
data indexing structure through data that have been fetched in previous
cycles. That can explain the number of points fetched per cycle in the
tweet is quite similar to the osp in the last 60% cycles. Overall, the
diverse spatial distribution can significantly affect cycles in the first
percentages, and gradually decease the impact in later cycles.

There are some improvement points for our framework in the near
future. First, the data density prediction method in Section 4.2 can be
enhanced by using more sophisticated spatiotemporal patterns, such
as spatial correlations of nodes. Our current strategy merely pertain to
the pattern that in the same spatial region, the number of points in one
temporal bin is quite possibly close to the count in another bin. Second,
the data size demonstrated in the experiment is around several million
data, which cannot fully show the capability of our framework. In the
future, we will test our framework on a larger data scale, in line with the
data scalability showing in existing works (e.g., STORM [34]). The last
one is to conduct a user study with domain experts in law enforcement
agencies. Since many agencies enforce strict policies to manage and
access crime records with designated devices equipped with limited
hardware configurations, the domain users would be the target group to
acknowledge the benefits of using our proposed framework and provide
valuable suggestions to improve the usability.

7 CONCLUSION

In this paper, we presented a visual analysis client-based framework
that enables the interactive exploration of large-scale spatiotemporal
data in constrained computer infrastructure settings. Our framework
incorporates an incremental data analysis workflow that provides users
approximate visual representation in real time and be within the limited
computation capability of a client machine. Experiments have validated
that our framework can successfully conduct interactive spatiotemporal
data exploration in a typical client machine. Our future work will
primarily focus on domain user feedback in law enforcement agencies.
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