
A Progressive k-d tree for Approximate k-Nearest Neighbors

Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete Senior Member, IEEE

Abstract— We present a progressive algorithm for approximate k-nearest neighbor search. Although the use of k-nearest neighbor
libraries (KNN) is common in many data analysis methods, most KNN algorithms can only be run when the whole dataset has been
indexed, i.e., they are not online. Even the few online implementations are not progressive in the sense that the time to index incoming
data is not bounded and can exceed the latency required by progressive systems. This latency significantly restricts the interactivity
of visualization systems especially when dealing with large-scale data. We improve traditional k-d trees for progressive approximate
k-nearest neighbor search, enabling fast KNN queries while continuously indexing new batches of data when necessary. Following
the progressive computation paradigm, our progressive k-d tree is bounded in time, allowing analysts to access ongoing results within
an interactive latency. We also present performance benchmarks to compare online and progressive k-d trees.

Index Terms—Approximate k-Nearest-Neighbors, Progressive Data Analysis, Algorithm, Real-Time

1 INTRODUCTION

Progressive data analysis has recently gained in popularity due to its
ability to deliver ongoing results before the whole computation is com-
pleted [9, 30]. In contrast to previous computation paradigms such as
online computation [1], progressive algorithms deliver estimates at a
bounded rate: they are guaranteed to return a partial result in a speci-
fied delay to comply with human attention constraints.

However, despite the advantages of progressive computation, it is
not always simple or even possible to convert a sequential algorithm
directly to a progressive one, and such a hurdle hinders the applicabil-
ity of progressive computation to a wider range of data analyses.

In this paper, we address one important problem: computing k-
nearest neighbors (KNN) progressively. KNN is an optimization prob-
lem of finding the k closest points to a query point in a multidimen-
sional metric space. The KNN problem is a building block of many
computer vision and machine learning methods such as feature match-
ing [20], clustering [31], classification [23], projection [25], and non-
parametric density estimation [10]. Thus, designing an efficient pro-
gressive algorithm for the KNN problem is an important step towards
extending the applicability of progressive systems.

This article presents a progressive k-d tree algorithm which can pro-
cess KNN queries while continuously indexing new batches of data. It
is based on previous work on improved k-d trees [21, 28]. We first re-
view previous approaches made for KNN search and discuss new chal-
lenges and requirements in interactive scenarios. Then, we improve
the sequential k-d tree algorithm to first become online and then pro-
gressive. Finally, we report on performance benchmarks to compare a
popular open-source k-d tree implementation (i.e., FLANN [21]) and
ours.

2 RELATED WORK

In this section, we first introduce previous approaches to the k-nearest
neighbor problem in parallel with progressive systems for interactive
analysis. Then, we present the challenges and opportunities for de-
signing a progressive algorithm for the k-nearest neighbor problem.

• Jaemin Jo is with Seoul National University, Korea, Republic of,
E-mail: jmjo@hcil.snu.ac.kr

• Jinwook Seo is with Seoul National University, Korea, Republic of,
E-mail: jseo@snu.ac.kr

• Jean-Daniel Fekete is with Inria, France,
E-mail: Jean-Daniel.Fekete@inria.fr

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

Formally, given N points in P = {p1, · · · , pN} and a query point p,
a KNN search finds (the indices of) the k nearest points of the query
point in P. Formally, this operation can be stated as follows:

KNNk(p) 7→ {i1, i2, · · · , i j, · · · ik} where i j ∈ [1,N]

KNNk(p) is a set of indices that satisfy the following condition:

∀i ∈ KNNk(p) ∀ j ∈ [1,N]−KNNk(p), ||p, pi|| ≤ ||p, p j||

where ||p, pi|| is the distance between p and pi.
One straightforward approach is to calculate the distances from the

query point p to every point in the dataset and take the k closest. How-
ever, this method is very inefficient since it has to iterate over all points
and thus has a time complexity of θ(N). A more efficient approach
is to use a search data structure or an indexing method. In the re-
cent years, there has been important advances in such data structures
and algorithms to speed-up KNN queries. However, these advances
have mostly focused on optimizing the query time, considering that
the indexing was done once for all and thus the indexing time was less
important than the query time [7]. However, for progressive systems,
both times are important because data can be loaded progressively,
the KNN queries can be done progressively, and therefore the index
should be updated progressively too.

A popular approach to improve the query time is to compute ap-
proximate k-nearest-neighbors instead of exact ones. Approximate k-
nearest neighbor search (AKNN) techniques are more efficient than
exact KNN but all of them also require building an index. For ex-
ample, the most efficient method to date, the hierarchical navigable
small-world graph (HNSW) [17], needs all data point to be loaded up-
front and a special graph structure to be built before querying. From
the visual analytics point of view, such a precomputation leads to long
loading times, hampering the interactivity of the entire system. Only a
few AKNN techniques, such as FLANN [21], support online updates;
they allow inserting new points after an index is built. However, this
is not sufficient for interactive visual analytics because the insertion
time is not bounded. Indeed, we observed that the FLANN algorithm
pauses longer than ten seconds to update the indexes for a few hun-
dred thousand points, exceeding the time limit to keep the user’s at-
tention [22].

The simplest data structures for AKNN are space-partitioning trees.
They recursively divide a multidimensional space and build a tree
structure that can be used to accelerate searching. Initially designed
for exact KNN matches, k-d trees [5] have been one of the most widely
used methods for KNN queries. A k-d tree iteratively splits the space
with hyperplanes and builds a binary tree, allowing a logarithmic time
complexity for KNN search. At each level in the binary tree, data is
divided into two groups by the dimension in which the data has the
highest variance.

Later, variants of k-d trees have been proposed to further reduce the
query time. Beis and Lowe [4] showed that limiting the number of vis-
ited nodes in a k-d tree could bring a large speedup in the query time
with a small loss in accuracy. For KNN search in higher dimensional
spaces, Silpa-Anan and Hartley [28] presented the idea of multiple ran-
domized k-d trees where data is recursively split with a dimension that
is randomly chosen from a small set of candidate dimensions with the
highest variance. Muja and Lowe [20] identified two best algorithms
for KNN querying: randomized k-d trees and hierarchical k-means
trees, and presented an algorithm that selects optimum parameters for
the algorithms in terms of speed and accuracy criteria. Going one step
further, they extended their work to perform distributed nearest neigh-
bor search on multiple machines [21].

Another body of research adopted partitioning strategies with
hyperplanes not aligned with axes. Examples include non-axis-
aligned hyperplanes [29], random projection trees [8], trinary pro-
jection tree [12], ball tree [14], and several open-source implemen-
tations [6, 19, 23, 26].

Hash-based techniques use a set of locality-sensitive hashing (LSH)
functions [2]. The core idea is that a pair of two close points is more
likely to fall into the same bucket after hashing than a pair of two dis-
tant points. Therefore, hash-based techniques can efficiently search
for neighbors by looking up the buckets that a query point falls into.
The strength of hash-based techniques is that they can provide a the-
oretical base on the search quality. Examples include LSH forest [3],
multi-probe LSH [15], and kernelized LSH [13].

Graph-based techniques model multidimensional data points as a
graph by mapping the points to vertices and the neighborhood rela-
tionships to edges. Once the graph is built, AKNN search can be
done by exploring the graph. From the KNN graph, Sebastian and
Kimia [27] selected a few well-separated vertices (i.e., seeds) and iter-
atively moved the seeds to points that are closer to the query point until
satisfactory neighbors were found. Hajebi et al. [11] provided theoret-
ical guarantees for the accuracy and the computational complexity of
such a greedy method. Wang et al. [32] proposed a new approach to
construct approximate KNN graphs by building exact neighborhood
graphs for hierarchically divided data and combining the graphs. Re-
cently, more sophisticated graph structures such as navigable small
world graphs are used for KNN queries. In addition to short-range
links in a traditional neighbor graph, navigable small world graphs
have long-range links that connect two distant points. Malkov et
al. [16] showed that these long-range links can be used for logarithmic
scaling of neighbor exploration. Later, Malkov and Yashunin [17] fur-
ther improved the performance by introducing hierarchical structures
to navigable small world graphs. Yet, the construction of the graphs is
more costly than the other methods and cannot easily be done online.

Throughout a few decades of KNN research, query time (i.e., time
taken to perform a KNN search) has been the key measure for eval-
uating the performance of various techniques. Indeed, in most stud-
ies mentioned in this section, authors assumed that data points had
already been inserted to an index and measured the time taken to pro-
cess queries. This is also the case with benchmarks in the public do-
main [7, 18]. However, such benchmarks are meaningful only when
the data is kept constant. In more interactive scenarios such as interac-
tive analysis by human analysts, the data can be changed dynamically
through user interaction such as filtering and aggregation. Thus, it is
necessary to keep the whole process of KNN queries, including build-
ing, and querying the index, interactive. In this paper, inspired by Pro-
gressive Visual Analytics [30], we introduce a progressive k-d tree for
approximate k-nearest neighbor algorithm that can keep the latency
for building, maintaining, and querying the index within a specified
time bound. We chose to start with the multiple randomized k-d tree
algorithm which is simple yet one of the most efficient algorithms for
AKNN queries [20].

3 APPROACHES FOR THE APPROXIMATE K-NEAREST NEIGH-
BOR PROBLEM

In this section, we first describe a sequential algorithm using ran-
domized k-d trees or a k-d forest for approximate k-nearest neigh-

bor (AKNN) search, and then improve it first to be online and then
progressive. Among many algorithms mentioned in the related work
section, we chose the k-d forest because 1) it is known to be efficient
and yet easy to implement [20] and 2) an online version of the algo-
rithm is available in open-source [19] so we could directly compare
our progressive version to the online version.

3.1 A Sequential Algorithm
A k-d tree is a binary tree built by recursively partitioning a multidi-
mensional space using axis-aligned hyperplanes [5] and used there-
after to search, guaranteeing log2 N search time and N× log2 N build
time. At the root node, the algorithm chooses a cutting dimension
which has the largest variance, and assigns points to child nodes: the
points whose value on the cutting dimension is less than the median
are assigned to the left node and the remaining points are assigned to
the right node. This procedure repeats until only one point remains in a
node. In the randomized k-d tree forest, we randomly choose a cutting
dimension among the top n (e.g., n = 5) dimensions with the largest
variance. This allows us to build multiple randomized trees and repre-
sent high-dimensional spaces more effectively. The algorithm can be
described as follows:

Algorithm 1 A sequential algorithm for building a randomized k-d
tree of the given l points in L

1: procedure BUILDSEQUENTIAL(L)
Input: L is a list of l points of D dimensions.
Output: A randomized k-d tree

2: if L has only one point then
3: node← a new leaf node
4: node.point← L[0]
5: return node
6: end if
7:
8: node← a new internal node
9: calculate the variance of each dimension in L

10: node.cutdim← a random dimension with large variance
11: node.cutval← the median of values of node.cutdim in L
12:
13: left← [p for p in L if p[node.cutdim]≤ node.cutval]
14: right← [p for p in L if p[node.cutdim]> node.cutval]
15:
16: node.left← BuildSequential(left)
17: node.right← BuildSequential(right)
18: return node
19: end procedure

Algorithm 1 has three strong limitations: First, it requires all points
to be already loaded in main memory (L) before building the random-
ized k-d trees. Such a constraint forces analysts to wait until all data
is read from a disk before performing any analysis. Second, once the
data structures are built, the algorithm does not allow any modifica-
tion on them (e.g., by inserting new points). Finally, the running time
of the algorithm solely depends on the size of input (i.e., l) and thus
latency cannot be controlled.

3.2 An Online Algorithm
In contrast to a sequential algorithm, an online algorithm allows
adding new points to trees even after the trees are built. This benefits
interactive systems in that analysts do not have to wait until all data
is loaded. Rather, the data is split into mini-batches, loaded onto the
system incrementally, and can be used for further online algorithms.
Analysts can access the running result between the mini-batches, ob-
taining an approximation of the final results.

However, we found such online data structures for AKNN search
was rare; the FLANN library [21] is the only one that supports online
updates. It builds a small k-d tree of the points in the first mini-batch
using the same algorithm as the sequential one (i.e., Algorithm 1).
Then, other points can be added into the tree thereafter when needed.

The insertion procedure of the FLANN library is very akin to that
of a binary tree; starting from the root node, each point moves to either
the left or the right child by comparing its value at the cutdim dimen-
sion and cutval of an internal node until it reaches a leaf node. Then,
the leaf node becomes an internal node, and the two points become the
children of the node. Algorithm 2 describes the insertion procedure in
more detail.

Algorithm 2 An algorithm for inserting a new point p into a random-
ized k-d tree with a root node node

1: procedure INSERT(node, p)
Input: node is the root of a k-d tree and

2: p is a new D-dimensional point
Output: p is inserted as one of the leaf nodes in the tree.

3: if node is a leaf node then
4: mark node as an internal node.
5: calculate the absolute difference between p and
6: node.point at each dimension
7: choose a cutdim dimension with the largest difference
8: cutval← (p[cutdim]+node.point[cutdim])/2
9: if p[cutdim]≤ cutval then

10: node.left← a new leaf node with a point p
11: node.right← a new leaf node with a point node.point
12: else
13: node.left← a new leaf node with a point node.point
14: node.right← a new leaf node with a point p
15: end if
16: return
17: end if
18:
19: if p[node.cutdim]≤ node.cutval then
20: Insert(node.left, p)
21: else
22: Insert(node.right, p)
23: end if
24: end procedure

As more points are inserted to a k-d tree, the tree can become un-
balanced, deteriorating the query time. In the FLANN library, the dis-
tribution of the points in the first mini-batch heavily affects the overall
performance since they are used to build a “skeleton” of the tree. At
worst, if all the updates after the first mini-batch are skewed to one
side of the k-d tree, all the remaining points are inserted in a linked list
and the search time becomes linear with the number of points. This
implies the need to rebalance the tree when possible. In real cases, the
unbalance is never that extreme, but can vary substantially if the data
added has a different distribution than the original tree. The imbal-
ance leads to a slower query time with little degradation of the quality.
On the other side, when updating a tree for a large dataset, assuming
the data is stationary, the distribution of incoming data will at some
point converge to the distribution of the whole dataset and the tree will
remain balanced after inserting new points.

FLANN’s implementation of k-d trees uses a simple strategy for re-
balancing the trees: it re-constructs all trees each time the dataset dou-
bles in size from the initial dataset (i.e., the first mini-batch). There-
fore, the k-d trees can become unbalanced as new data is loaded but
eventually will be re-constructed. When loading a large dataset pro-
gressively, even if the incoming distribution matches the current k-d
tree structure, FLANN will always re-construct its k-d trees when the
dataset doubles in size. To sum up, the FLANN implementation suf-
fers from three problems:

1. the k-d tree may become unbalanced when data is added, leading
to longer KNN searches,

2. the k-d tree is always re-constructed when the data doubles in
size, leading to very long interruptions in the KNN search at un-
predictable moments,

3. the k-d tree is always re-created when the data doubles in size,
even when it remains balanced.

3.3 A Progressive Algorithm
To overcome the limitations of online k-d trees, we made three main
changes to the FLANN algorithm:

1. we maintain a quality measure for each k-d tree and trigger a
reconstruction process when the measure satisfies a certain crite-
rion,

2. when needed, we construct a fresh and balanced k-d tree with all
the points

3. the construction is done in a parallel/interleaved task using a
build queue, thus spreading the load and avoiding brutal changes
in query times. When a new k-d tree is built, we drop the most
unbalanced one and replace it with the new one,

To estimate the quality of a k-d tree, we use the following method:
assume a k-d tree of size N is balanced; its depth is dlog2 Ne. The
points are stored as leaves so accessing a point will require log2 N
operations. When a k-d tree becomes unbalanced, its depth will vary
and the query time for a point P will be proportional to the depth of P.
On average, the query time for accessing P is: φP× depth(P) where
φP is the probability to search P and depth(P) is the depth of P in the
tree. On a balanced k-d tree, the cost of querying for an arbitrary point
is log2 N whereas for a specific k-d tree T , the cost c(T) is:

c(T) = ∑
p∈T

φp×depth(p) (1)

If the tree is perfectly balanced, the cost equals to log2 N, other-
wise, it becomes higher. The quality of a tree is thus the difference
between the actual cost and the lower bound is the number of addi-
tional operations we should perform to search a point on average. To
decide when we should trigger the computation of a fresh tree, this loss
should be compared to the cost of rebuilding the whole tree: N log2 N.
We accumulate the loss in the query time (i.e., c(T)− log2 N) for each
query and once the accumulated loss exceeds a threshold, or a spe-
cific proportion of the rebuilding cost (i.e., α ×N log2 N, where α is
a reconstruction weight), we start the reconstruction procedure. In
practice, we do not compute Equation 1 for every update but main-
tain the cost incrementally. For each point p, we maintain the depth
of the point, depth(p), and the number of times the point is searched,
freq(p). Let’s define ∑ freq = ∑p∈Q freq(p), then φp can be calculated

by φp =
freq(p)
∑ freq . When a point p is searched, freq(p) will increase by

one and the updated cost C′ is computed from the the current cost C:

C′ =
∑ freq×C+depth(p)

∑ freq+1

After updating the cost, we increment freq(p) and ∑ freq by one.
When we need to reconstruct a k-d tree (i.e., the accumulated loss

exceeds the threshold), we distribute the reconstruction load across
multiple iterations by building the tree incrementally. To this end, we
implement a non-recursive version of Algorithm 1 using a build queue,
allowing the whole procedure to be interleaved between iterations.
The progressive reconstruction algorithm (Algorithm 3) is similar to
Algorithm 1 except that recursive calls are replaced with insertion on
the queue.

To achieve progressiveness, the algorithm should work only for a
given number of operations and stop, allowing the user or the system
to access the ongoing results. For each iteration, a certain number of
operations are given to the algorithm and the algorithm assigns the op-
erations to insertion tasks and reconstruction tasks. An insertion task
reads one point from data and inserts it to the k-d trees as described in
Algorithm 2. If reconstruction is needed after insertion, the algorithm
builds a new k-d tree incrementally by calling the function Initialize
first and the function ProcessQueue in the following iterations, as de-
scribed in Algorithm 3. When the new k-d tree is built, the algorithm
replaces the most unbalanced tree with the new one.

The number of allowed operations is a parameter specified by the
user. The algorithm can freely use this number to perform either in-
sertion or reconstruction tasks. In our benchmark, we used a simple

Fig. 1. Benchmark results with one million points from the GloVe dataset [24]. FLANN’s online algorithm (the red line) rebuilds the k-d trees each
time the data size doubles. When inserting a new mini-batches of points (the leftmost chart), the online algorithm produces a delay longer than 10
seconds which hampers the interactivity of visualization systems. Our progressive algorithms is bounded in time, yielding gains in insertion time
with a small loss in query time.

Algorithm 3 A progressive algorithm for building a new k-d tree
1: procedure INITIALIZE(L)

Input: L is a list of l points of D dimensions.
2: queue← a new work queue
3: root← a new node
4: queue.push((root,L))
5: end procedure
6:
7: procedure PROCESSQUEUE(ops)

Input: ops is the number of operations allowed for reconstruction
Output: returns true if reconstruction is done

8: count← 0
9:

10: while count < ops and queue is not empty do
11: node,L← queue.pop()
12: count← count+1
13:
14: if L has only one point then
15: mark node as a leaf node.
16: node.point← L[0]
17: continue
18: end if
19:
20: calculate the variance of each dimension in L
21: node.cutdim← a random dimension with large variance
22: node.cutval← the median value of node.cutdim in L
23:
24: left← [p for p in L if p[node.cutdim]≤ node.cutval]
25: right← [p for p in L if p[node.cutdim]> node.cutval]
26:
27: node.left← a new internal node
28: node.right← a new internal node
29:
30: queue.push((node.left, left))
31: queue.push((node.right,right))
32: end while
33:
34: return true if queue is empty
35: end procedure

strategy: we assigned a specific proportion (τ) of the allowed opera-
tions to insertion tasks and 1−τ to reconstruction tasks. For example,
when τ = 0.5, half of the operations are used to insert new points and
the other half to reconstruct a tree.

4 BENCHMARK

We conducted benchamarks to compare the performance of the on-
line and progressive k-d tree algorithms. We used the GloVe [24]
dataset that had 100 dimensions. We randomly took 1M points from
the dataset as train data (i.e., points that were inserted to k-d trees) and

1K points as test data (i.e., points that were queried). The order of
points was kept as in the original dataset. We computed the exact 20
neighbors (i.e., k = 20) before the benchmark to measure the quality of
answers. For each iteration, we gave 5,000 operations to both online
and progressive k-d trees. The online version used up all operations to
add new points (i.e., 5,000 points were inserted to k-d trees during one
iteration). For the progressive k-d tree, we used three different values
for τ: 0.1, 0.2, and 0.3. We set the value of α (i.e., a reconstruction
weight) to 0.25.

To assess the quality of answers, we computed the mean distance
error (MDE) which is the mean ratio between the distances from each
query point to its exact k-th nearest neighbor and to its approximate
k-th nearest neighbor. An MDE of one means that the exact neighbors
were found, and an MDE of two means on average the algorithm found
neighbors that are twice farther than the exact ones.

Figure 1 shows the results of the benchmark. Since the online ver-
sion used all 5K operations to insert new points, the corresponding red
line ends at the 200th iteration (1M / 5K = 200). The results revealed
the limitation of the online tree: at the 128th iteration, the online tree
produced a peak latency in insertion time which was longer than 10
seconds. In contrast, the progressive trees showed more consistent in-
sertion time always shorter than 0.1 second.

In the online tree, we could see a performance gain in querying
speed after tree reconstruction (i.e., at the 62th and 126th iterations in
the middle chart of Figure 1). The progressive trees showed lower per-
formance but the gap could narrow by adjusting the value of α (i.e.,
the reconstruction weight). In terms of accuracy, the MDE converged
to near 1.06 for all algorithms. The online tree took the smallest num-
ber of iterations to reach the final MDE because it used all operations
to insert new points from data so exact neighbors were more likely
to be in the trees and searched. However, due to its longer insertion
time, the online tree took the longest to reach the final MDE (marked
with dotted lines in Figure 1), which suggests the effectiveness of our
progressive k-d trees.

5 CONCLUSION

In this article, we presented a progressive k-d tree algorithm for ap-
proximate k-nearest neighbor search. We showed three major changes
to the previous k-d trees: maintaining a quality measure to determine
when to reconstruct trees, triggering the reconstruction when really
needed, and introducing a build queue to spread the reconstruction
load. In our benchmark, our progressive k-d tree alleviated brutal
changes in query time while keeping the speed and accuracy compara-
ble to those of online k-d trees. The implementation of our progressive
k-d tree is available at https://github.com/e-/PANENE.

As future work, we will integrate our progressive k-d tree to the
ProgressiVis toolkit [9]. We are also designing a progressive cache
data structure that enables constant-time lookup for finding the KNN
of a point. This cache is required for e.g. progressive t-SNE [25].

https://github.com/e-/PANENE

REFERENCES

[1] S. Albers. Online algorithms: a survey. Mathematical Programming,
97(1):3–26, 2003. 1

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 459–
468. IEEE, 2006. 2

[3] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes for
similarity search. In Proceedings of the 14th international conference on
World Wide Web, pages 651–660. ACM, 2005. 2

[4] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In Computer Vision and
Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society
Conference on, pages 1000–1006. IEEE, 1997. 2

[5] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975. 1, 2

[6] E. Bernhardsson. Annoy. https://github.com/spotify/
annoy. Last accessed: 2017-07-22. 2

[7] E. Bernhardsson. Benchmarking nearest neighbors. https:
//github.com/erikbern/ann-benchmarks. Last accessed:
2017-07-22. 1, 2

[8] S. Dasgupta and Y. Freund. Random projection trees and low dimensional
manifolds. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 537–546. ACM, 2008. 2

[9] J.-D. Fekete and R. Primet. Progressive analytics: A computation
paradigm for exploratory data analysis. ArXiv e-prints, July 2016. 1,
4

[10] K. Fukunaga. Introduction to statistical pattern recognition. Academic
press, 2013. 1

[11] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast ap-
proximate nearest-neighbor search with k-nearest neighbor graph. In
IJCAI Proceedings-International Joint Conference on Artificial Intelli-
gence, page 1312, 2011. 2

[12] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua. Optimizing kd-trees
for scalable visual descriptor indexing. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages 3392–3399.
IEEE, 2010. 2

[13] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scal-
able image search. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 2130–2137. IEEE, 2009. 2

[14] B. Leibe, K. Mikolajczyk, and B. Schiele. Efficient clustering and match-
ing for object class recognition. In BMVC, pages 789–798, 2006. 2

[15] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh:
efficient indexing for high-dimensional similarity search. In Proceedings
of the 33rd international conference on Very large data bases, pages 950–
961. VLDB Endowment, 2007. 2

[16] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. In-

formation Systems, 45:61–68, 2014. 2
[17] Y. A. Malkov and D. Yashunin. Efficient and robust approximate nearest

neighbor search using hierarchical navigable small world graphs. arXiv
preprint arXiv:1603.09320, 2016. 1, 2

[18] Mrpt performance comparison. https://github.com/
ejaasaari/mrpt-comparison. Last accessed: 2017-07-22.
2

[19] M. Muja. Flann - fast library for approximate nearest neighbors. https:
//github.com/mariusmuja/flann. Last accessed: 2017-07-22.
2

[20] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with au-
tomatic algorithm configuration. VISAPP (1), 2(331-340):2, 2009. 1,
2

[21] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for
high dimensional data. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 36, 2014. 1, 2

[22] J. Nielsen. Usability engineering. Elsevier, 1994. 1
[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. 1, 2

[24] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, 2014. 4

[25] N. Pezzotti, B. P. F. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann,
and A. Vilanova. Approximated and user steerable tsne for progressive
visual analytics. CoRR, abs/1512.01655, 2015. 1, 4

[26] rpforest. https://github.com/lyst/rpforest. Last accessed:
2017-07-22. 2

[27] T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large
databases. In Pattern Recognition, 2002. Proceedings. 16th International
Conference on, volume 3, pages 291–296. IEEE, 2002. 2

[28] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image descrip-
tor matching. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, June 2008. 1, 2

[29] R. F. Sproull. Refinements to nearest-neighbor searching in k-
dimensional trees. Algorithmica, 6(1):579–589, 1991. 2

[30] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-
driven visual exploration of in-progress analytics. IEEE Trans. Vis. Com-
put. Graphics, 20(12):1653–1662, Dec 2014. 1, 2

[31] T. N. Tran, R. Wehrens, and L. M. Buydens. Knn-kernel density-based
clustering for high-dimensional multivariate data. Computational Statis-
tics & Data Analysis, 51(2):513–525, 2006. 1

[32] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable k-nn
graph construction for visual descriptors. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1106–1113, June 2012.
2

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
https://github.com/ejaasaari/mrpt-comparison
https://github.com/ejaasaari/mrpt-comparison
https://github.com/mariusmuja/flann
https://github.com/mariusmuja/flann
https://github.com/lyst/rpforest

	Introduction
	Related Work
	Approaches for the Approximate k-Nearest Neighbor Problem
	A Sequential Algorithm
	An Online Algorithm
	A Progressive Algorithm

	Benchmark
	Conclusion

