
Xplorer: A System
for Visual Analysis of Sensor-based Motor Activity Predictions

Marco Cavallo, Çağatay Demiralp

Fig. 1. Xplorer interface. The main view shows a timeline containing a set of stacked linear tracks, which can either represent classification
events (a) or ground-truth labels (b). A dedicated protocol track (c) can be used to annotate time windows, while a synchronized video
player (d) enables users to validate the context of event predictions. Customization of the appearance of the tracks can be performed
from the left collapsible sidebar (d). A command line interface (f) is also available to users.

Abstract—
Due to the large diffusion of wearable devices, the task of detecting motor activities from sensor data is becoming increasingly common
in a wide range of applications. During the development of predictive models for activity recognition, data scientists generally rely on
performance metrics (such as accuracy score) for evaluating and comparing the performance of classification algorithms. While these
numerical estimates represent a straightforward way to summarize the effectiveness of a model, they convey little insights on the causes
of misclassified events, not offering enough clues for data scientists to improve their algorithms.
In this paper we present BlueSky Xplorer, an interactive visualization system to analyze, debug and compare the output of multiple
predictive models at different levels of granularity. We combine classification results on multi-sensor data with the context of usage
of each sensor and with ground truth information (such as textual labels and videos), representing them as temporally-aligned linear
tracks. We then define an algebraic language over these tracks that enables users to quickly identify classification errors and to visually
reason on the performance of classifiers.
We demonstrate the usefulness of our tool by applying it to a real-world example, involving the development of models for assessing the
symptoms of Parkinsons disease. In particular, we show how Xplorer was used to improve the performance of classification models and
to discover problems in data temporal alignment.

Index Terms—Visualization, sequence, sensor data, classification, model validation, track algebra, query, Parkinson.

1 INTRODUCTION

• Marco Cavallo, IBM Research. E-mail: mcavall@us.ibm.com
• Çagatay Demiralp, IBM Research. E-mail: cagatay.demiralp@us.ibm.com

Manuscript received xx xxx. 201x; accepted
xx xxx. 201x. Date of Publication xx xxx. 201x; date of current version xx xxx.
201x. For information on obtaining reprints of this article, please send e-mail
to: reprints@ieee.org. Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

The large diffusion of consumer-level wearable devices has opened
many possibilities related to activity monitoring. Smart watches and
devices such as Fitbit [1] are increasingly used by people to track their
daily motor activity, whereas a wide variety of biosensors is starting to
play an important role in patient monitoring. The task of detecting motor
activities such as walking from sensor data is thus becoming very popular
in the fields of data science and machine learning. The development of
these prediction models generally relies on validating their performance
on a database of labeled sensor data. Numerical metrics such as accuracy



score are often computed to establish how well a classifier can identify
specific activity events. Based on these metrics, data scientists can
compare the performance of different prediction models and establish
which of them can be deployed. In less trivial applications, data scientists
may also have to evaluate the combined performance of multiple
classifiers, which can be based on the input of different sets of sensors.

While performance metrics try to condense the effectiveness of a
model to ready-to-use numerical estimates, they are sometimes not
sufficient for a deeper understanding of why a prediction model seems
to perform better than another one. In particular, the lack of contextual
information does not allow data scientists to analyze classification
results at a more granular scale, making it difficult to gain insights
on the possible reasons behind each misclassification. On top of not
being adequately helpful for suggesting how to improve predictive
models, the computation of metrics also assumes the presence of correct
ground-truth labels, assumption that may not always hold — especially
for manually-generated motion activity labels.

We introduce a novel visualization system, Xplorer, to interactively
analyze the classification results of sensor-based predictive models.
In particular, Xplorer enables users to debug and compare multiple
classifiers up to the level of granularity of a single prediction, providing
different ways to validate the performance of each model. Our contribu-
tion consists in (1) a new method for visually coordinating classification
results with ground-truth information (i.e. labels, video) and in (2)
an algebraic language for quickly identifying relevant prediction
events. In particular, Xplorer aims at facilitating the interpretation of
classification results, enabling data scientists to reason on the causes of
misclassifications and to improve their predictive models. We note that
our system does not aim at gaining insights on the internal behavior of
a predictive model, rather it serves the purpose of analyzing its output.

To illustrate the usefulness of our system, we report a real-life use case,
involving the development of predictive models for identifying relevant
motor activities in Parkinson’s disease. We study the usage of Xplorer
by a mixed group of fourteen people, composed of both data scientists
and business people working on the same project. We demonstrate how
Xplorer proved to be fundamental for visually validating and comparing
predictive models, for reasoning on the causes of mispredictions, and for
understanding the trade-offs in the usage of different sensors. We further
observe how the system, being independent from the implementation
details of each predictive model, facilitated the discussion among data
scientists and between science and business people in general.

2 RELATED WORK

We build on earlier work on temporal and sequential data visualization
(e.g., [3–5, 8]) along with interactive systems that query and compose
visualizations through algebraic operations (e.g., [3,6,7]). The visual de-
sign of Xplorer takes inspiration from genome browsers. USCS Human
Genome Browser [5] visualizes requested portions of the human genome
as aligned, linear tracks, which can be added, removed and reordered
based on need. Fundamental interactions include zooming and panning
to enable fine-grained exploration of the data, often represented as hor-
izontal bars of variable length. These features are also commonly found
in multimedia editors, where tracks typically represent audio or video
sources. In the context of data analysis, Time-ART [8] and ChronoViz [4]
provide synchronized, interactive visual representations of multiple data
streams, enabling navigation and annotation of time-coded data.

In order to formulate or validate complex hypotheses about the data,
earlier work formulates algebraic operations over visual elements. For
example, invis [3] provides a simple algebraic approach to inspecting
RNA sequences, where mutations can be visually aggregated using the
logical operators AND, OR, and NOT. Polaris [6], introduces a table
algebra, extending Wilkinson’s grammar of graphics [7]. Xplorer builds
on earlier work and introduces a basic track algebra, facilitating the
ability to effectively filter, compose, and compare track representations
of classification results.

3 XPLORER

The interface of Xplorer (Fig. 1) is composed of a main view, where
classification results and labels are represented as linear tracks stacked

Fig. 2. Track definition. A track in Xplorer corresponds to a list of
non-overlapping time-periods (“events”). There are two types of tracks:
classifier tracks and label tracks. The former contains probability scores
associated to each event and can be visualized either as an area chart
or as a horizontal bars (“blocks”), whereas the latter contains only
information about time intervals. Classifier tracks can be converted into
label tracks by applying a threshold on their prediction scores.

vertically. A track visually corresponds to a set of non-overlapping
colored blocks, positioned over a common timeline.

In the case of classifier tracks (Fig. 1a), a block corresponds to a
single prediction or to a set of consecutive identical predictions, which
may result in blocks of variable length. If the output of a classifier is
binary, the block is made visible only when the activity is detected.
If a predictive model outputs a probability score, the block is instead
generated by applying a classifier-specific threshold to the continuous
prediction (Fig. 2). Here the color opacity of the block is determined
by its associated probability score (e.g. the higher the probability of
a detected activity, the more intense the color).

In the case of label tracks (Fig. 1b), each block corresponds to a textual
label (e.g. “Walking”, “Person is sitting”), characterized by a start and
end time which determine its position and length. Labels can be either
algorithmically generated or manually defined by a human, and are often
used as ground-truth or as a reference for validating classifier tracks.
The color of blocks in a label track, differently than in classifier tracks,
has always the same opacity. A particular type of label track, called
protocol track (Fig. 1c), can hold different unique labels on the same
timeline, given they do not overlap with each other. The protocol track is
generally used as a time reference track, where each block corresponds
to a specific task and is identified by a different categorical color.

Whereas all other temporal data is represented as a linear track, video
information is shown in a separate container (Fig. 1d), which can be
dragged across the interface and freely resized by the user.

The interface of Xplorer further includes some auxiliary modal win-
dows and a left sidebar, from which users can decide which tracks to vi-
sualize and easily zoom to specific events contained in the protocol track.

3.1 Interactions
Track information can be analyzed at different levels of granularity
through zooming and panning, which are performed with the mouse
wheel and drag actions. In order to maintain the time alignment among
predictions and labels, each movement transform is applied equally
to all tracks. By double clicking on a block or by selecting the name
of a protocol label from the left sidebar, all tracks are conveniently
scaled to show a close-up of the moment of interest. By hovering on a
block, information about the correspondent prediction or label is shown
(e.g. author, duration) as a tooltip. In particular, the tooltip includes
classifier-specific attribute values (e.g. “tremor frequency”, “angular
velocity”) in the case of classifier tracks (Fig. 5).

Each classifier track further includes four buttons, enabling the user to
1) increase its height for better visibility, 2) play consecutively the videos
of all detected activities, 3) display information about the underlying
predictive model (e.g. sensors, prediction window and threshold used),
and 4) switch between two different visualization modes. Fig. 2 explains
how a classifier track can be represented also as an area chart, visualizing
a continuous probability score over time. This mode is particularly
useful for observing how the threshold of a classifier determines
which events are positively predicted (and thus generate a block). The
threshold can be dynamically changed by the user by moving the red
horizontal line shown in Fig. 2, thus avoiding the recomputation of



Fig. 3. Classifiers validation with track algebra. In the above figure, A
represents a classifier track and B represents a label track containing
ground-truth labels. By computing the intersection and the subtraction of
the two tracks, it is possible to obtain new tracks corresponding to correct
and incorrect predictions.

classification results. All tracks can additionally be sorted by mouse
dragging, allowing the user to better compare them visually.

3.2 Track Visual Algebra
While analyzing each track separately may be sufficient for some
applications, in many cases the possibility to combine different tracks
could be essential. For instance, a user may want to analyze the output
of a tremor classifier only when a different classifier is predicting
no walking movement. Similarly, a user may want to consider all
moments in which a subject is stationary, thus needing to unify the
labels associated to “Sitting” with the labels associated to “Standing”.
To enable reasoning beyond the scope of single classifiers and labels,
we define a visual algebra that allows to generate new tracks as a
combination of existing tracks. Operations such as addition, subtraction,
logic conjunction and disjunction can be applied to both classifier and
label tracks with a different semantic meaning.

Fig. 3 illustrates how the most common operators can be used as a
form of classifier validation. If we denote A a classifier track and B a
label track used as ground-truth, A∧B corresponds to the intersection
of both tracks, that is to the events that were correctly predicted by the
model (true positives). Similarly, we can define difference between track
A and track B as a new track were all block instances of B are removed
from A. This way, the track A−B will contain all classifier detections
that do not match any ground truth label (false positives), while B−A
will conversely represent labeled events that were not identified by the
predictive model (false negatives).

The power of the track algebra consists in enabling users to quickly
combine tracks to validate complex hypotheses about the classification
process. In particular, in presence of ground-truth labels, it makes
the identification of misclassified events visually straightforward. In
combination with the video functionality, it also enables to play consec-
utively all false positive and all false negative predictions for a particular
classifier. This way, the user can visually validate the performance of his
predictive model and reason on the causes of each single misprediction.

3.3 Command Line
Xplorer interface features a command line interface for enabling users
to quickly perform complex interactions, such as track manipulation
through visual algebra. Fig. 3.4 shows a list of the most common
commands that can be executed from the command line. Each command
is composed of one operator and one or two operands, which can be
track identifiers or numerical values. A track identifier is automatically
generated as a combination of the track name, author and version (e.g.
the first version of the “Sleeping” classifier created by author “John”
will generate the id “SleepingJohn1.0”) and is made available through
auto-completion. For instance, while typing “threshold sle” the com-
mand line will automatically infer which available track is best suited
for the operator “threshold”, highlight it in the main view and offer the
suggested completion “threshold SleepingJohn1.0”. When a command
generates a new track, this one is added to the main view and its name and
identifier are automatically defined based on the operation performed.

Fig. 4. Performance metrics. Xplorer features a modal window to display
different measures of classification performance. The user chooses which
classification track and which label track to consider, then metrics such
as AUC (Area Under the Curve), Jaccard index, precision, recall, and F1
score are shown. An interactive ROC (Receiver Operating Characteristic)
curve is also displayed to help the user choose an adequate threshold
for the selected classifier.

3.4 Classifiers Validation

While observing a classifier track A and a ground-truth label track B
next to each other, it is intuitive to understand that the performance of
the predictive model depends on how much the blocks of each track are
aligned with each other. Optimally, for each block in A there should exist
a block in B of equal length, whose start end and points match the ones
of A. Misclassifications and other prediction-related errors may however
make one of this two blocks absent or misaligned. A straightforward,
numerical way to quantify the visual overlap of two tracks is the Jaccard
distance, computed as their intersection over union. By sampling each
track into a sequence of prediction values or binary labels, it is possible
to compute different performance metrics commonly used in data
science, such as accuracy score, precision, recall and F1 score.

Note that the value of all these metrics often depends on the threshold
applied to the continuous prediction of a classifier. The choice of the
threshold is often critical since it allows to balance the amount of true
positives and false negatives allowed for a predictive model. For this
reason, we include in the Xplorer interface a modal window displaying
also a Receiver Operating Characteristic (ROC) plot (Fig. 4) with its
related Area Under the Curve (AUC) score, a threshold-independent
performance metric. In particular, the user can observe the percentage
of true positives and false negatives associated to the current threshold
and see how this percentage changes by modifying it.

4 USE CASE: BLUESKY PROJECT

BlueSky project [2] aims at deploying predictive models to automatically
assess the symptoms of Parkinson’s disease using wearable sensors.
Xplorer was used by a team of fourteen data scientists and business
people as a companion tool over most of the project.

A total of six wearable IMU sensors were used, worn by Parkinson’s
disease subjects over sessions (visits) of about one hour. The sensors
measured accelerometer, gyroscope and magnetometer information at
128Hz and were placed on the wrists, feet, chest and back of the patients.
During each visit, all subjects performed the same set of predefined tasks,
according to a single clinical protocol. A group of external technicians
took care of recording sessions, labeling specific activities and
time-stamping the execution of tasks. Sensor data, ground-truth labels
and video files were all stored in a single database, that all data scientists
could access during the development of their predictive models.

Each time a data scientist produced a new version of a model or
algorithm, its classification results were loaded into our visualization



Operation P1 P2 Description
negate T1 Generates¬T

add / union T1 T2 Generates T1∨T2
intersection T1 T2 Generates T1∧T2

errors T1 T2 Generates T1⊕T2
subtract T1 T2 Generates T1−T2

play T Plays all events in track T
threshold C Float Changes C’s threshold to a fixed value

show / hide T Shows / hides track T
jaccard T1 T2 Jaccard distance between T1 and T2

roc C L Computes ROC curve and AUC score
report C L Computes precision, recall and F1 score

transform C Thresholds C and generates an L track
rename T Renames a track

Table 1. Commands available from the Xplorer command line. P1 and
P2 are the parameters required by each command. T is a placeholder
for a generic track’s identifier, whereas C and L indicate a classifier and
a label track respectively. Track type conversion is automatically handled
according to the definition explained in Fig. 2.

Fig. 5. Sample tracks from the BlueSky Project. By observing the
pattern of green boxes (label tracks), it is straightforward to observe
that the subject is alternating walking to turning movements. While
the alignment of the classifier tracks “Walking” and “Turning” with their
correspondent ground-truth labels seems satisfactory, we may note that
the predictive model “Body Turn” appears to detect events too early. By
inspecting sensors usage in the video and the attributes associated to
each prediction (shown as a tooltip), data scientists can try to debug their
prediction models. The possibility to dynamically change the threshold
of a classifier (as shown on the “Turning” track) further aims at a better
understanding of predicted motor events.

system and analyzed by the whole team during group meetings. Xplorer
demonstrated in fact to be a great tool for team discussion, enabling
even non-technical people to understand classification results. Without
knowing the implementation details of each predictive model, it was
sufficient to visually check the alignment of tracks and further validate
it with the video.

The playback functionality, in combination with the track algebra,
proved to be a fundamental feature for quickly identifying mispredic-
tions. For instance, by subtracting the “Walk” label track to the “Walk”
classifier track and by playing the resulting track, it was possible to ob-
serve all cases in which the classifier wrongly predicted the subject was
walking (false positives). By observing the video and the task labels, data
scientists realized that, since the model was using the sensor worn on the
chest, it was incorrectly detecting movements such as arising from the
chair and coat buttoning. Similarly, the “Step detector” classifier track
(based on sensors worn on the shoes) showed false positives in correspon-
dence of feet tremor, particularly common when subjects were sitting
with their legs crossed. Based on these insights, data scientists decided
to re-train their classification models with data from different sensors or
by including in the training set the activities that had been misclassified.

Another widely used feature was the possibility to inspect information
about each single prediction. After having noticed that the two hand
classifiers “Pronation-supination” and “Tremor” were biased by the
action of walking, data scientists were able to mouse over mispredicted
events and observe the attributes computed by their predictive models.
In this case, each prediction held numerical information about hand
rotation angle, hand rotation speed, tremor frequency and tremor

amplitude. By analyzing these attributes, data scientists were able to
filter out the movements happening at specific frequencies associated
to walking, thus making their model more robust.

Xplorer was also useful in handling ground-truth labels. The track
algebra allowed to quickly combine partial labels (e.g. the tracks “Short-
Walk” and “LongWalk” were combined into a single track “Walking”)
and to identify mismatches with other reference tracks and the video. In
particular, Xplorer opened a discussion on the quality and reliability of la-
bels, which otherwise would have never been questioned. By observing
labels associated to false negatives, data scientists observed an incoherent
labeling and an unclear definition of movements such as walking and turn-
ing. Should few short steps considered a walk? Should a larger rotation of
the chest be considered a turn? If so, would they be useful to consider for
the purpose of the project? Similarly, false positives showed the absence
of a large amount of labels, which were not annotated by human operators
because the subject was out of camera. Data scientists further noticed
correct classification results were often misaligned with ground-truth
labels: with the help of the video feature, it was demonstrated that human-
generated labels generally occurred before a subject started a movement.
For instance, a technician would annotate a walk whenever a subject
showed the intention to move, without waiting for him to make a first step.

Finally, our visualization system played a relevant role in the phase
of model validation. Balancing the amount of true positives and false
negatives was of fundamental importance for the project, which required
being certain of positive predictions more than correctly predicting all
events. The possibility to dynamically change the threshold applied to
classifier tracks, combined with the ROC curve visualization, helped
data scientists visually and quantitatively observe prediction changes.

5 CONCLUSION

In this paper we present a new visualization tool, Xplorer, to query and
visually analyze classification results originated from sensor temporal
data. In particular, Xplorer offers contextual information such as ground
truth labels and video that data scientists can use to better interpret the
performance of predictive models. Through a real-life use case, we
demonstrate how our system is suitable for understanding the causes
of misclassifications, improving classifiers performance and identifying
early on possible systemic errors in the data.

REFERENCES

[1] Fitbit official site for activity trackers. https://www.fitbit.com/.
Accessed: 2017-07-25.

[2] Monitoring parkinsons disease with sensors and analytics to improve
clinical trials. https://www.ibm.com/blogs/research/2017/04/

monitoring-parkinsons-disease/. Accessed: 2017-07-25.
[3] Ç. Demiralp, E. Hayden, J. Hammerbacher, and J. Heer. Invis: Exploring

high-dimensional RNA sequences from in vitro selection. BioVis 2013 -
IEEE Symposium on Biological Data Visualization 2013, Proceedings, pp.
1–8, 2013. doi: 10.1109/BioVis.2013.6664340

[4] A. S. Fouse, N. Weibel, E. Hutchins, and J. D. Hollan. ChronoViz : A system
for supporting navigation of time-coded data. Chi 2011, pp. 1–6, 2011. doi:
10.1145/1979742.1979706

[5] W. J. Kent, C. W. Sugnet, T. S. Furey, and K. M. Roskin. The Human Genome
Browser at UCSC W. Journal of medicinal chemistry, 19(10):1228–31,
1976. doi: 10.1101/gr.229102.

[6] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, analysis,
and visualization of\nmultidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):1–14, 2002.
doi: 10.1109/2945.981851

[7] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[8] Y. Yamamoto, A. Aoki, and K. Nakakoji. Time-ART: a tool for segmenting
and annotating multimedia data in early stages of exploratory analysis.
Conference on Human Factors in Computing Systems, pp. 113–114, 2001.
doi: 10.1145/634067.634136

https://www.fitbit.com/
https://www.ibm.com/blogs/research/2017/04/monitoring-parkinsons-disease/
https://www.ibm.com/blogs/research/2017/04/monitoring-parkinsons-disease/

	Introduction
	Related Work
	Xplorer
	Interactions
	Track Visual Algebra
	Command Line
	Classifiers Validation

	Use Case: BlueSky Project
	Conclusion

