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Fig. 1. Immersive visualization of an ensemble of energy simulations supports a campus renewable energy design study.

Abstract—We describe a new framework that allows users to explore and steer ensembles of energy systems simulations by coupling
multiple energy models and interactive visualization through a dataflow API. Through the visual interface, users can interactively
explore complex parameter spaces populated by hundreds, or thousands, of simulation runs and interactively spawn new simulations
to “fill in” regions of interest in the parameter space. The computational and visualization capabilities reside within a general-purpose
dataflow architecture for connecting producers of multidimensional timeseries data, such as energy simulations, with consumers of
that data, whether they be visualizations, statistical analyses, or datastores. Fast computation and agile dataflow can enhance the
engagement with energy simulations, allowing users to populate the parameter space in real time. However, many energy simulations
are far too slow to provide an interactive response. To support interactive feedback, we are creating reduced-form simulations
developed through machine learning techniques, which provide statistically sound estimates of the results of the full simulations at
a fraction of the computational cost. These reduced-form simulations have response times on the order of seconds, suitable for
real-time human-in-the-loop design and analysis. The approximation methods apply to a wide range of computational models, including
supply-chain models, electric power grid simulations, and building models. Such reduced-form representations do not replace or
re-implement existing simulations, but instead supplement them by enabling rapid scenario design and exploration for large ensembles
of simulations. The improved understanding, facilitated by the reduced-form models, dataflow API, and visualization tools, allows
researchers to better allocate computational resources to capture informative relationships within the system as well as provide a
low-cost method for validating and quality-checking large-scale modeling efforts.

Index Terms—Deep learning, immersive visualization, databases, multidimensional time-series, neural networks, ensemble visualiza-
tion, energy system models.

1 INTRODUCTION

Ensemble simulations, namely simulation suites using multiple models
with varying input parameters and initial conditions, are a common
approach to understanding highly complex natural phenomena. These
simulation collections combine different models and settings to cover a
range of possible outcomes and provide statistical measures indicating
the similarity of individual model results. For these types of simulations,
a major challenge is in determining appropriate parameter settings;
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often the number of parameters is quite large, some settings may fail
to produce realistic results, and the cost to compute all parameter
perturbations may be astronomical. Often, a pre-defined set of initial
conditions and parameter settings is used, such as NOAA’s Short-Range
Ensemble Forecast (SREF) [14], but such an approach may not be ideal
in other scenarios. More robust solutions must include methods to
select regions within the parameter space that are of scientific interest
and often this requires a user-in-the loop interface to guide simulations,
tuning inputs within a specific range of inquiry.

To address these challenges, the National Renewable Energy Lab-
oratory (NREL) has developed a framework for visualization-driven
design, exploration, and analysis of energy simulations. The framework
uses what we are terming ensemble steering to provide a user with



an overview of a simulation’s parameter space via a visual analysis
environment, and, based on the user’s interplay, spawn new simula-
tions to provide results fast enough to be interactive. In cases where
the simulation response time is too slow for interactivity, we develop
reduced-form models that approximate the full simulation model to
enable interactive sessions; offline simulation of the full model may
also proceed later, eventually producing more accurate results. This
ensemble steering and analysis environment allows users and stake-
holders to rapidly design alternative scenarios for simulation, quickly
view approximate results of those simulations, and refine the design or
explore the simulation results in depth. The computational and visual-
ization capabilities reside within a dataflow architecture for connecting
producers of multidimensional timeseries data with consumers of that
data. The architecture is general-purpose, supporting a wide range of
multivariate time-varying data producers, including measurements from
real-time sensors and results from high performance computing (HPC)
simulations, and supporting multiple concurrent consumers including
visualizations, statistical analyses, and datastores. Consumers can re-
quest existing data records or can make a request for a non-existent
record, spawning a new simulation to satisfy that request.

2 ENSEMBLE STEERING FRAMEWORK

Computational steering is “the interactive control over a computational
process during execution” [13], and allows a user to guide computation
toward interesting aspects and react to previous results. Often this
includes the ability to change or halt simulations while they are running
and much of the research in simulation steering is on the interface
between user and simulations [3,16,21]. Similar to the work presented
here, systems such as World Lines [20] integrate visualization, simu-
lation, and computational steering into a single framework, allowing
the user to investigate alternative scenarios. A main distinction of our
system is rather than steering or “nudging” [21] a simulation while
being executed, we are using our framework to explore the parameter
space of an ensemble via simulations running at an interactive pace,
be it a full-scale simulation or an approximate model, similar to the
conceptual framework proposed by Sedlmair et al. [17]. This approach
quickly gives the user an overview of the relationship between the
parameter and output spaces, allowing them to focus computational
and time resources on specific areas of interest. Our system can act as a
frontispiece to the full-scale simulation suite, moving the computation-
ally intensive aspects of simulations outside of the traditional analysis
workflow. By approximating results on the fly, we can maintain the
low latency required for interactivity and heavy computation can be
focused on scientifically relevant locations.

Our system is composed of three distinct areas of focus developed
in concert, and designed to be general purpose in regards to their work-
flow connections, but customizable to be used within the many simula-
tion scenarios existent at NREL. The main connector is the dataflow
API, providing a highway between the visual analysis component, the
reduced-form models, a datastore, and the HPC resource on which to
spawn new simulations. This design provides the skeleton for ensemble
steering as well as easy entry points for customization for each domain
scenario.

2.1 A Dataflow API for Multidimensional Time-series
The dataflow API [1] normalizes interactions between software that
serves multidimensional record-oriented data and the software that con-
sumes such data. While developed with an eye toward time-series data,
such is not a requirement. In the context of the API, multidimensional
data records are defined as simple tuples consisting of real numbers,
integers, and character strings. Each data value is tagged by a variable
name according to a pre-defined schema, and each record is assigned a
unique integer identifier. Conceptually, these records are isomorphic to
rows in a relational database, JSON objects, or key-value maps. The
objective of this API is to simplify and unify the interactions between
records producers and consumers, with the idea being that any client
designed to use this specification can speak to any server that imple-
ments the API. We have attempted to reduce the barriers of using this
specification to a minimum, for both server and client implementations,

Fig. 2. Interaction diagram for discovering available simulation models,
spawning new simulations, and visualizing the results.

so as not to preclude a micro-service model. Therefore, we primarily
specify the data transport layer and messaging; storage, data structures,
and other implementation details are left to the developer. However, as
the API is closely related to common database models, most implemen-
tations merely need to provide a translation between backend database
storage and the API.

The dataflow API is organized in a client-server model. Clients
ask for available datasets (e.g., simulation results), receive extant data
and any new records as they are generated, and, as needed, ask for
the simulation of new data based on user input. A server may host
multiple “models” (or tables, in database terms); a model may hold
static unchanging data, but the design places emphasis on dynamic
models, where records are being added continually, such as the case
of sensor measurements being collected as new telemetry becomes
available, or the generation of new simulation results. New records are
then provided as a notification to clients. Following the pipeline model,
dataflow API servers and clients can be chained together, creating a
transformation path for records or even coupled models. Figure 2
shows a high-level view of the desired communication protocol for the
simplest visualization use case. Separate server implementations of
the API exist in C++ and Haskell; client implementations currently
exist for C++, Haskell, JavaScript, Python, and R. Collectively, the
servers support persistent backends for delimited-text files, databases
(PostgreSQL, MySQL, SQLite3, and ODBC), and real-time sensor
feeds (Haystack [9]).

The dataflow API also provides bookmarking, defined as a set of
records or a query (the database analogue being an SQL view) that
saves the current state of the environment. As an example, consider
a researcher exploring a dataset. They may identify a set of records
that represents a discovery or a query of interest, and define a tag of
those records for later use. More importantly, bookmarks enable a
collaborative approach to data exploration. Bookmarks can be shared
across connected clients; another researcher can immediately pick up a
bookmark and explore the same results, a client can continually create
bookmarks of selected content so that the selection can be mirrored to
another user, or clients may watch new bookmarks, and if a bookmark
contains a certain tag, publish those results on a webpage.

Transport of the data is specified to take place over WebSockets [10].
WebSockets are ubiquitous and easily available to programmers of most
languages. WebSockets provide a mechanism for poll-free notification
and large message sizes. The format chosen for the message bodies
themselves is Google Protocol Buffers [8]. Encoders and decoders for
messages are automatically generated, reducing implementation effort
and ensuring message correctness. In Figure 3, we show an example
structure and options of our Records API system. Though we only



Fig. 3. Structure of an example Records API deployment. Note that
the API only governs communication between remote procedure call
(RPC) endpoints (servers) and the clients, as shown in the left and center
columns of the diagram.

specify communication between client and server, the server itself has
no restrictions on how it obtains data. Complex data harvesting systems
can be completely abstracted away, providing a uniform method of data
access.

In order to maximize usage by energy researchers who may not
have extensive software engineering experience, this minimalist API
avoids imposing burdensome metadata, structural, or implementation
requirements on developers by relying on open-source technologies that
are readily available for common programming languages. In particular,
the API has been designed to place the smallest possible burden on
services that provide data.

2.2 Deep Learning

Maximizing user engagement relies on simulations providing fast, re-
sponsive results on a sub-minute timescale; a low level of latency allows
stakeholders to properly focus on exploration and inference in a truly
interactive manner. Currently, only a few of NREL’s large energy mod-
els are fast enough to be used seamlessly in this manner; most other
important simulation suites are too computationally costly to operate
in this fashion. Many of these models exhibit extensive regions of
nearly linear behaviors, but those regions are punctuated by nonlinear
transitions, jumps, or other critical phenomena. If the locations of the
quasi-linear and the nonlinear regimes were mapped approximately,
researchers could focus computation preferentially towards the nonlin-
earities while not sacrificing coverage of the more linear portions of
parameter space. Simplified or reduced-form versions of NREL models
would allow analysts to carefully plan their computer experiments with
the full models, making far better use of computing resources. There-
fore, we are developing reduced-form representations of these more
computation-intensive energy models through machine learning.

Machine learning in this project has the primary aim of approxi-
mating aspects of interest of the energy simulations that are too costly
to evaluate interactively. By framing this task in a standard statistical
modeling framework, we have access to a plethora of methods for
learning appropriate maps between relevant inputs and outputs. The
choice and effectiveness of methods is highly dependent on the struc-
ture of both input and output data. For simple relationships, traditional
regression methodologies such as linear regression, mixed models, gra-
dient boosting, and random forests are competitive, particularly for
one-dimensional output scenarios [11]. Longitudinal and functional
analysis approaches are applicable when the stated goal is to represent
some combination of input or output in functional form.

Since the primary objective of our approximate modeling is to
achieve some level of predictive accuracy coupled with fast evaluation
ability, we have paid particular attention to leveraging recent advances

in neural networks for this project [7]. Flexibility in handling highly
nonlinear relationships, advances in computational implementations,
and the ability to handle multidimensional output spaces are all useful
properties for the task at hand. It is important to note that while deep
multilayer neural networks may take quite long to train, even with the
modern GPUs available, this is a one time cost. Predictive evaluation
of these networks is quite fast since it mainly requires efficient matrix
multiplication and evaluation of nonlinear activation functions.

2.3 Interactive Visualization and Analysis
The challenges of rapidly developing insights from NREL’s complex
flagship models do not simply end with interactivity. Another substan-
tial hurdle is abstracting features of interest from the high dimensional
input/output of the models: in general, these simulation results contain
lower dimensional geometric structures that have clear and insightful
meanings/interpretations. Statistical and visualization techniques that
identify and present such structures greatly speed the interpretation and
exploration of dauntingly complex simulation results.

To facilitate the parameter space exploration and feature identifica-
tion, we have developed within our framework the ability to connect
a variety of data analysis environments to the dataflow API. The flexi-
bility of our framework allows the integration of generic visualization
clients such as R and Python Jupyter notebooks for quantitative anal-
ysis, web applications such as Shiny and D3 for broad deployment,
and in-house tools developed for 3D immersive (i.e., head-tracked
stereoscopic) environments. This multitude of visualization clients is
an important aspect of our ensemble steering framework, allowing its
use on different types of data and simulations scenarios. The system
provides an interface to explore the multivariate ensembles as well as
design new scenarios by manipulating input parameters. Thus, analysts
can quickly develop and test hypotheses regarding the relationships
between simulation inputs and outputs.

3 DISCUSSION OF APPLICATIONS

To date, we have used our ensemble steering framework to develop cus-
tomized workflows targeted at specific stakeholders exploring analytic
questions using multiple energy models. We demonstrate the use of
our framework on three examples, however the development of novel
visualization techniques and reduced-form models is ongoing.

3.1 Renewable Energy Planning
NREL campus planners are using our ensemble steering framework to
evaluate the energy impacts of a wide range of planning scenarios by
combining technical, economic, and policy perspectives, and explor-
ing the parameter space by interactively manipulating on-site power
generation, electrical loads, and cost assumptions. The simulations
combine techno-economic optimizations from REopt [18], whole build-
ing simulations from EnergyPlus [4], and power flow simulations from
OpenDSS [5]. Figure 1 shows our immersive environment in which
multiple stakeholders can gather and evaluate planning scenarios by
walking inside a virtual campus, see the effects of various settings,
and spawn new simulation runs. In the figure, campus buildings are
shown in dark gray, and the lines are modulated by color and directional
texture to show power flow variables. While in its early stages, we have
already discovered opportunities for energy systems integration on our
campus by bringing our site planners and leadership together in this
environment, and have received requests to create similar models of
other sites.

3.2 Biomass Supply-Chains
Energy analysts and stakeholders at NREL actively use in-house tools
developed for the visualization of generic datasets of multidimensional
timeseries to explore results of biomass supply-chain models such as the
Biomass Scenario Learning Model (BSLM) [19], the Biomass Scenario
Model (BSM) [15], and a waste-to-energy system simulation (WESyS).
This suite of simulations uses the system dynamics methodology to
model dynamic interactions within the supply chain: the models track
the deployment of bioenergy given current technological development
and the reaction of the investment community to those technologies.



Fig. 4. Parallel planes in an immersive virtual environment with annota-
tions describing the visualization and user interface [2].

Immersive scatterplots and parallel planes [2] allow for the animated
visualization of five to twenty dimensions of such timeseries. Figure 4
shows an immersive parallel-coordinates display of variables from
the BSLM scenario. We observe that users of these visualizations
can effectively explore ensembles of hundreds to tens of thousands of
simulation results, interactively creating new simulations at the rate of
several hundred per hour. Driving simulation studies from immersive
visualization streamlines the simulation-analysis workflow.

Typically users alternate between hypothesis generation and hypoth-
esis testing; in the hypothesis-generation phase they select, filter, and
brush the existing ensemble of simulations, while in the hypothesis-
testing phase they create new simulations whose input parameter sets
they have tuned towards validating or falsifying the previous hypothesis.
Fortunately, the round-trip time for creating new BSLM and WESyS
simulations is less than ten seconds. In contrast, BSM simulations
take three minutes to complete, somewhat hampering the user expe-
rience of visually responsive addition of the new ensemble results,
but also motivating our development and deployment of reduced-form
machine-learning models.

3.3 Electric Power System Capacity Expansion
The lack of immediate response from ensembles of simulations
spawned by a visualization user is even more extreme in models like
NREL’s Regional Energy Deployment System (ReEDS), where each
simulation in the ensemble takes five or more hours to complete. The
ReEDS model is an electricity system capacity expansion model that
develops scenarios of future investment and operation of generation and
transmission capacity to meet U.S. electricity demand [6], representing
the continental United States with a very high spatial resolution [12]
and performing a system-wide least-cost optimization in two-year solve
periods from 2010 out to 2050.

Initial efforts have focused on creating reduced-form predictive mod-
els for projected national capacity of a variety of resources. A dense
multilayer neural network is used to map from a set of fixed category
designations (demand scenario, utility-scale solar penetration scenario,
etc.) to the projected capacity measurement from ReEDS. Figure 5
highlights a comparison between fully simulated and reduced-form pre-
dicted results for a small subset of estimated national wind capacities
ranging from 2018 to 2050. The average percent deviation between
predicted and ReEDS wind capacity was approximately 3%. Prelimi-
nary work on geothermal, coal, gas, and utility solar capacities showed
similar results. We aim to expand these results by modifying the the
available input data to incorporate continuous and potentially functional
metrics rather than hard-coded scenarios. This would allow users to
better explore new regions of the parameter space, either through mix-
ing existing scenarios or “drawing” new input curves. Discussions with
interested stakeholders in the electric power modeling domain suggest
that both in-depth, immersive visualization and lightweight, web-based
products using the reduced-form models would be of use. Both of
these objectives fit nicely in our framework API and will continue to

Fig. 5. Comparison of simulation and predicted results of the ReEDS
model. Each color represents a sampled ReEDS scenario with solid
lines corresponding to true output and dashed lines corresponding to
reduced-form predictions.

be developed.

4 CONCLUSION

Large-scale ensemble simulations are state-of-the-art in many applica-
tion domains. Techniques allowing for the rapid display, understanding,
and control of these simulations suites will become increasingly neces-
sary as models escalate in complexity and computational needs swell.
We believe our work here demonstrates a general application of an en-
semble steering framework to energy system models. Our dataflow API
allows users to explore and steer energy systems simulation ensembles
by coupling multiple reduced-form energy models and interactive visu-
alization, to provide a rich environment for engagement. Eventually,
we anticipate that each of NREL’s flagship energy-system simulation
models will have a simplified approximation available for use in hosting
stakeholder groups in design sessions and in simplifying inter-model
linkages in the preliminary or envisioning phases of complex studies.

The availability of fast approximate models will greatly increase the
agility of users interacting with complex models. We foresee much
future work in designing approximate models in conjunction with full-
scale models to facilitate stakeholder interactions, resulting in a superior
user experience. The approximate models will let users home in on the
regions of input parameter space of most value to the study at hand,
quickly identify the extent of input parameters needing exploration, and
intelligently specify the level of parameter sampling detail. Combined
with customized visualization and an appropriate data workflow, this
effort will collapse the time required to develop and analyze scenarios
by providing previews of full model results and will likely be used in
planning, quick-response, and quality assurance activities.
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