
Dynamic Client-Server Optimization for Scalable Interactive
Visualization on the Web
Dominik Moritz, Jeffrey Heer, and Bill Howe

Abstract—Low latency interactive data visualizations of large volumes of data are still rare on the web today. Their development
requires expertise in server development, API design, dataflow optimization, and browser technologies; developers rarely have the
time to optimize the whole stack from server to browser. To lift the burden of client-server co-development, we propose a system
that generates visualization applications from declarative visualization and interaction specifications. We envision a system that
automatically optimizes a visualization plan to reduce latencies, especially in low-connectivity or mobile networks. In this paper, we
investigate the design of automated techniques to determine a partition of work across server and client that minimizes latency. Our cost
model is based on a combination of data statistics, network performance, available computing resources, and predicted interactions.
As a preliminary evaluation of our approach, we describe how our system could work in the context of two analysis scenarios.

Index Terms—Interactive data visualization, dataflow graph, client-server architecture, cost model.

1 INTRODUCTION

Data visualizations are ubiquitous on the web and even novices can
create custom interactive data visualizations with D3 [5], Plotly [27],
highcharts [22], or Vega [33]. For small data, the browser can load
the data that is needed for the visualization when the web page is first
loaded. However, if the data is too large to be loaded and processed in
a browser, a static visualization has to be rendered on the server. There
are only a few interactive visualizations of large datasets in which
interactions may require data that is not yet present in the browser
(though web-based map applications and stock timeline visualizations
are two examples). These cases are rare due to the significant effort
involved: the developer must implement a coordinated client-server
application that cooperatively performs data transformations. Besides
being time intensive and error prone, the development of such an appli-
cation requires expertise in client (browser) and server development,
and API design. Because development of interactive visualization ap-
plications on the web is already difficult, these applications do not
leverage cross-stack optimization or the ability to move computation
from one environment to the other. Therefore, they require a network
round trip after potentially each interaction to get the data that is needed
to update the visualization.

Assuming current network latencies, developers can afford to make a
network round trip for interactions such as setting a filter to a new value
or zooming and panning (if navigation is not delayed) while maintaining
interactive response times that do not affect exploration [24]. Caching,
prefetching, and compression can further reduce latencies [14, 4]. How-
ever, brushing and filtering, and other interactions that continuously
change the query are not well supported and require sophisticated in-
dexing techniques [23, 25]. In low-connectivity or mobile networks,
latencies are much higher and optimizations that avoid network round-
trips have the potential to vastly improve the experience of interactive
visualizations. Recent research has mainly focused on minimizing the
latency of data processing systems for visualizations, yet server re-
sponse times are not negligible and must be considered when designing
for interactive performance. Moreover, there have been few efforts to
reduce latencies of the whole stack.

In this paper we propose an integrated server and client system that
enables seamless visual analytics of large datasets, and simplifies the
development of visualization applications. We observe that visual-

• Dominik Moritz, Jeffrey Heer, and Bill Howe are with the University of
Washington. E-mail: {domoritz,jheer,billhowe}@cs.washington.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of publication
xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

ization specifications that describe dataflow graphs (e.g., Vega [29])
appear structurally and semantically similar to database query plans,
and therefore might be similarly optimized. However, the inclusion of
feedback loops that change the dataflow graph (primarily in the form
of user interactions) leads to new challenges and constraints.

We are exploring the means of dynamic optimization of the visu-
alization plan — in the form of a dataflow graph — by partitioning
work across server and client to support interactive visualizations of
large data volumes. The visualization system may move computation
and data between the client and the server, rewrite the dataflow graph
to reduce latency, preload data to avoid network round trips, or add
sampling and aggregation that induce changes below the perceptual
threshold but increase performance.

We propose a cost model for determining a partitioning of the visu-
alization plan that minimizes latency based on a combination of data
statistics, network performance, and available computing and memory
resources. The cost model is based on the current state of the visual-
ization and predicted future states resulting from user interactions. A
prediction model provides guidance on what data should be cached,
evicted from the cache, or prefetched. In a different state of the visual-
ization, a different partitioning may be optimal so that the application
has to dynamically adjust the partitioning. Since user predictions and
estimates are likely to be inaccurate, the dataflow graph may be ad-
justed. We also envision that the server only sends the necessary data
as it is aware of exploration sessions and the state of the client.

By generating the code for the server and the client from a declar-
ative visualization specification, we hope to lift the burden of API
design, manual optimization of the dataflow, and implementation of
transformations, animations, and interactions from developers. As a
preliminary evaluation of our approach, we describe how our system
could optimize the dataflow in two analysis scenarios.

2 RELATED WORK

Our research draws on related work in scalable visualization, declarative
visualization specification, databases, and programming languages.

2.1 Scalable Data Visualization Systems
One of the most widely used systems for visually exploring data is
Tableau, the commercial version of Polaris [32]. Tableau connects to
relational databases and generates queries from a visualization spec-
ification. However, unsatisfied with the performance of this online
approach, Tableau created the Tableau Data Engine [34], a specialized
data analytic engine tightly coupled with the desktop software. The
authors emphasize the need for tighter coupling of the data processing
and visualization systems.

Wu et al. [36] describe their vision of a specialized database for visu-
alization to improve caching, prediction, and query optimization. They



propose a Data Visualization Management System (DVMS) that will
reduce the latencies of query execution for visualization applications by
considering visualization constraints for query optimizations. However,
their approach does not optimize the latency between the client and the
database server.

Recent research has proposed specialized low latency systems to
explore massive datasets such as large time series [8]. Nanocubes [23]
and imMens [25] contribute methods to store data in multidimensional
data cubes at multiple levels of resolution to perform accelerated query
processing. While the Nanocubes system requires a round trip for each
interaction, imMens decomposes the cubes into tiles that can be loaded
into the browser. Ahrens recently proposed an image based exploration
of precomputed data that enables exploration of simulation results [2].
However, Ahrens’ system and imMens are not well suited for ad-hoc
questions in exploratory analysis as filters deter the use of precomputed
aggregates.

Studies suggest that analysts can correctly interpret incremental
visualizations and take advantage of approximate yet immediate feed-
back [15]. This validates the use of databases that quickly compute
approximate aggregates (such as BlinkDB [1]) within data visualization
applications. Das Sarma et al. discussed efficient sampling methods,
an alternative to aggregation [12].

Grochow et al. [17] explored an architecture that exploits the advan-
tages of local CPUs, servers with many cores, and cloud services for
massive storage and make the case for “client + cloud” architecture.
However, they focus on long-running analytics workflows rather than
low-latency, interactive data exploration.

2.2 Declarative Visualization Specification
Hybrid client and server applications require significant developer effort.
We believe that a promising way to build such visualizations is through
a declarative visualization specification language [21] such as Vega [33].
Reactive Vega [29] extends Vega with a declarative interaction model
and a dataflow graph that treats events as streaming data sources to
enable declarative interactions and more efficient computation. We
build on their dataflow graph and extend it so that operators can be
placed either on the server or the client.

Using a declarative visualization specification has multiple advan-
tages. First, the visualization system can automatically generate the
client and server components, which are potentially in different lan-
guages (web clients generally use JavaScript and servers typically use
a language with better performance). Second, declarative languages
decouple specification from execution, allowing the runtime system
to optimize data processing. Lastly, the system can automatically add
abstraction operators to simplify data processing while retaining user’s
intent. For example, the system might add sampling or aggregation to
reduce the number of data points to the available pixel resolution. The
correct aggregation depends on implicit semantics of the data (e.g., in
most contexts cumulative income of an area is less meaningful than the
average income). Therefore the system may need explicit hints from
the developer about their intent.

2.3 Dynamic Query Optimization in Databases
A dataflow graph for visualization can be optimized with techniques
from query optimizers that are at the core of every database sys-
tem [31, 16]. However, a visualization changes its state when the
user interacts with it. To optimize a set of similar queries and optimize
queries using existing results, the database community has developed
multi-query optimization techniques [19, 28]. Adaptive query process-
ing reduces query runtime by constantly adapting the query plan to
observed statistics about the data [13, 3]. It could be used to enable
incremental computation and optimization for visualization dataflow
graphs. Programming language researchers have demonstrated systems
that automatically convert programs into incremental programs that can
resume computation when the program changes [9, 20, 18].

3 AN INTEGRATED CLIENT-SERVER VISUALIZATION SYSTEM

We propose a system that instantiates a dataflow graph from a user-
provided declarative visualization specification. A partitioned graph

can model existing visualization applications that use a client and a
server. Today, developers have to make a static decision about the
partitioning and define a static interface eliminating any potential for
optimization across the server and the client.

Our approach is to (1) automatically generate a dataflow graph
from a declarative visualization specification, (2) dynamically optimize
the graph partition, and (3) instantiate the necessary server and client
components. In this section, we describe the visualization dataflow
graph, define the goals of our optimizations, and state our assumptions
about the client, server, and the network. These assumptions will define
the scope of our proposed system.

3.1 Data Flow Graphs to Model Visualization Applications
Equivalent to the information visualization reference model [6], Chi
defines the data state model (illustrated in Figure 1) to describe the
stages by which raw data goes through a set of transformations until
visualized. Transformed data is ultimately presented in a view after a
visual mapping transform [10, 11]. Chi showed that this taxonomy is
generic enough to describe the design space of visualizations.

Value Analytical 
Abstraction

Visual 
Abstraction View

Data 
Transformation

Visualization 
Transformation

Visual Mapping 
Transformation

Fig. 1. The Information Visualization Data State Reference Model from
Chi et al. [10], which can be used to model a large number of visualization
techniques and applications.

We can use this taxonomy to describe how a visualization application
uses a transformation pipeline as a dataflow graph of operators such as
filter, map, reduce, join, and aggregate. A dataflow graph
is almost equivalent to a query execution plan in databases. After the
transformation part of the pipeline, the data has to be mapped to visual
attributes such as x, y, color, or shape using a scale (e.g., a mapping
from the data domain to a color palette) [35]. In addition to the above
operators, a visualization application could use caching “operators”.
For example, an interactive map application that generates static tiles
inserts a cache after the visual abstraction (tiles are pre-generated).

To extend this model to a client-server architecture, the data flow
graph can be partitioned into a server component and client component.
For static visualizations, the optimal point to split the dataflow graph is
either immediately after the raw data (send all the data to the browser)
or after the view (render an image server-side and send that).

To add interaction to the dataflow graph, we build on the ideas
from Satyanarayan et al., who treat events triggered by interactions as
streaming data sources that can change the parameters of operators [29].
In their system parts of the dataflow can be recomputed and only the
necessary operators are invoked. Today, most visualization applications
on the web typically recompute the whole dataflow graph with each
interaction. Our system requires support for partial execution of the
dataflow so that only parts of the dataflow are on the client and latencies
are lower.

3.2 Dataflow Graph Optimizations
The optimization of the dataflow graph is similar to query plan opti-
mization in databases. In databases, a declarative query is translated
to an optimized, imperative, query execution plan. An optimizer runs
optimization passes on the query plan. For example, selections (filter)
should be as close to the raw data as possible, reducing the size of the
data early. Databases aim to minimize query execution times within
the given memory and compute constraints and make estimates about
the sizes the the data at any point in the dataflow graph described by
the query execution plan.

Optimizing the partitioning of a dataflow for visualization is more
complex because:
• Visualization has stronger latency requirements. Latencies of

multiple seconds are often considered sufficient for analytical
database applications.



• Visualization brings specific constraints, such as the available
pixel resolution, and approximation opportunities due to limits of
visual perception. The implication is that in addition to reordering
operators, new operators may be added to further reduce latency.

• The optimization should consider future queries and optimize
them together. For example, a filter that is parameterized by
the output of an interaction should ideally execute in the client
to avoid the network round trip. However, in traditional query
optimizations, filters are typically pushed as low as possible to
reduce data size early. The database community has developed
techniques to answer queries using views [19], where the opti-
mizer would not push the filter if it meant it could not reuse a
materialized result.

• The dataflow graph executes partly on the server and partly on
the client. These two environments have different constraints
(memory, compute resources, . . . ).

Overall, dataflow optimization can be complex and so requires a cost
model to predict the data sizes at different operators in the dataflow, and
an interaction model to predict future interactions and state transitions.
The result of this optimization may include reordered operators and the
addition of new operators (e.g., for sampling or aggregation).

3.3 Cost Model for a Low Latency Visualization System
In §3.1, we explain how a dataflow graph can describe a visualization in
a client-server architecture. We use this model to design a system where
initial operators of the dataflow graph read from a large database on
a server. For each interaction that changes parameters of the dataflow
graph (e.g., a filter widget changes the parameter of a filter condition),
ideally the affected operator and necessary data are on the client, and no
network round trip is needed. If the client does not have enough data,
only the data that the client does not have to recompute the dataflow
graph should be transferred.

To determine whether the computation can be executed solely on
the client, what data needs to be transferred, and to describe how
the visualization changes, we model visualization state. Although
the server also preserves state, for most estimates the client state is
more important. The client state consists of the current dataflow graph
(with all parameters and data) and the contents of the data cache. The
visualization transitions to a new state when the user interacts with it or
when the contents of the data cache change.

To achieve interactive response times and improve the exploration
experience by reducing latencies [24], the overall goal is to reduce the
latency from loading the visualization to a rendered view (latencyinit)
and the latency between an interaction i and the rendered view
(latencyi, i ∈ I = 1,2...,n). For a complete exploration session, the
cost can be calculated as a weighted sum of latencies.

cost = winit× latencyinit +∑
i∈I

wi× latencyi (1)

Here, winit and wi are weights and I is the set of all interactions. In
the simplest case wi is 1 and the weight winit defines the importance
of the initial latency compared to that of subsequent interactions. In
practice, it is impossible to know how a user interacts with a visual-
ization so that we have to find a way to reduce latency latencyi when
the interaction i happens without negatively impacting future state
transitions.

The two components of the cost model are a latency model (§3.3.1)
to predict latencies for different dataflow graph partitionings and rewrit-
ings and an interaction prediction model (§3.3.2) to determine what
data to cache or prefetch.

3.3.1 Latency Calculation
The core components of a client-server application are client, server,
and network. The client has limited memory (memc) and limited com-
putational power (cpuc). The server has more memory (mems > memc)
and more computational power (cpus > cpus) than the client. The
network has limited bandwidth (bandwidthnet) and latency (latencynet).

The latency between an interaction i and the rendered view is in-
versely proportional to performance of the client. Moreover, we have to

consider latency of dataflow optimization itself (optl) since interactive
data visualizations should be low latency (§3.3). If not all the data is in
the client we have to add the network and server latencies.

latencyi =
bi

cpuc
+optimization time +

r× (latencynet + ci×bandwidthnet +
di

cpus
)

(2)

Here, r is 1 if the client requires data from the server and 0 otherwise.
bi, ci, and di are data-dependent parameters and change with each
interaction i. We expect latencynet and bandwidthnet to affect latencyi
more than cpuc and cpus (conditioned on r = 1). The calculation of
these parameters is beyond the scope of this paper and will be addressed
in future work.

3.3.2 Prediction Model
To reduce latency over multiple interactions (Eq. 1), the framework has
to consider the probability of state transitions and their incurred cost.
Cetintemel et al. describe a system that guides users through data ex-
ploration [7]. They model user sessions as a Markov Chain where state
transitions are labeled using interactions and transition probabilities.
Doshi et al. discussed several model-based prefetching strategies such
as Random, Direction, and Focus [14]. Given a declarative interaction
specification such as Reactive Vega [30], we can construct such a model
of potential user actions as shown in Figure 2.

Likely future states that need data that is not currently in the client’s
data cache trigger prefetching during idle times. Data that is only
needed for unlikely states can be replaced with data that is more likely
to reduce overall latency.

Initial state

S13

Zoom in/ out

S11 S15Pan right/ leftPan right/ left

Zoom outZoom out

S21

Zoom in/ out

S22Pan right/
left S23Pan right/

left

Zoom in/ out

Zoom in/
out

Zoom in/
out

Zoom in/
out

Zoom in/
out

S25

Zoom in/ out

S24 Pan right/
left

Pan right/
left

Zoom in/
out

S12

Zoom in/
out

S12

Zoom in/
out

Pan right/
left

Pan left Pan right

Zoom out Zoom out

Zoom level 1x

Zoom level 2x

Zoom level 4x

Zoom level 8x

Fig. 2. Simplified state diagram for an interactive line chart that sup-
ports zooming (with fixed zoom levels) and panning (with fixed distance).
Dashed circles represent more states. Transition probabilities are not
shown. This state transition model describes a Markov Chain with inter-
action probabilities for transitions.

3.4 Initial Design
In this section we describe how we will initially design our system.
Naturally, we may adjust the actual design of this system as we progress.

When the visualization application is loaded, the dataflow graph is
instantiated on the client and the server. Of all possible instantiations,
the system chooses the optimal instantiation based on the cost model
and assumptions about the data and how the user will interact with the
visualization. Then, we have to find the point in the dataflow graph
where data is transferred that causes the smallest latency latencyinit.
If we assume that network performance (latencynet and bandwidthnet,
§3.3.1) dominates the latency calculation, this point is when the least
data has to be transferred.

Most likely, the user will not immediately interact with the visualiza-
tion so that we can use the idle time to load more data from operators
closer to the source. When an interaction causes a state transition, the
client has to determine whether it can transition only with the data that
is currently present in the client. We assume (§3.3.1) that the latency



is minimal when all computations are done on the client, but this may
not always be possible. The client does not have enough data if an
interaction affects an operator in the dataflow graph that is below the
point at which data has been transferred (Figure 3, the Filter on the
left side).

Since the server maintains a user session, it knows the current and
goal state of the client. Therefore, it can recompute parts of the dataflow
graph and send only the data that the client does not have or cannot
compute. If we only want to optimize the current latency, the optimal
point to transfer data is where the amount of data that has to be sent is
minimized (§3.3.1). However, if another interaction is likely to occur
soon after the current interaction (e.g., slider), it may be better to load
more data and increase the latency of the current interaction but reduce
the latency over multiple interactions (Eq. 1)). If the expected latency
is high, the system can decide to send aggregated or sampled data and
progressively load high-resolution data.

When the user triggers an interaction and new data is required from
the server, in some cases (e.g., zoom, pan) the client can start an
animation to the new state using interpolated data while data is being
transferred. If the data arrives before the animation finishes, the client
can integrate it into the animation. We call this optimistic animation.

Raw Data

Filter

Aggregation

Scales

View
Filter

Parameter
View

Bounds

Client Server

N
et

w
or

k

User Interaction Signals

View Bounds 
Filter

Raw Data

Filter

Aggregation

Scales

View

View Bounds 
Filter

Raw Data

Filter

Aggregation

Scales

View
Filter

Parameter
View

Bounds

Client Server

N
et

w
or

k

User Interaction Signals

View Bounds 
Filter

Raw Data

Filter

Aggregation

Scales

View

View Bounds 
Filter

Inactive

Active

zoom into
sparse
region

Fig. 3. Simplified dataflow graph for a heatmap visualization of raw data
that can be zoomed (changing the view range) and filtered (changing
the filter parameter). On the left side the aggregation has to run on the
server because the data is too large. On the right side, the user zoomed
in on a sparse region and the filter and aggregation can run on the client.

These optimizations reduce network round trips. Therefore, the
visualization application could in some cases work when the user is
offline. During idle times the client can also decide to prefetch data or
evict data from the caches. Note that the dataflow graph is optimized
based on assumptions about the data and interactions.

A data visualization framework should be able to re-optimize the
plan because one plan may not be optimal for all interactions and
assumptions about the data may prove inaccurate.

3.5 Examples
We now show two examples that demonstrate features of the proposed
system and how the cost model affects optimization and partitioning.

3.5.1 Example 1: Line chart with zoom and pan
With ATLAS [8], Chan et al. presented a client-server system that
supports smooth interactions with large time-series data. They use
predictive caching to enable fast pan and zoom. We expect a novice to
be able to build an application like ATLAS with our system because
the optimizations are automatically handled.

The dataflow graph for this example has a time range filter and an
aggregation to reduce the data resolution to the available horizontal
pixel resolution. Panning is modeled as shifting the filtered range.
Zooming is modeled as shrinking and growing the time range. Figure 2
shows the state transition model for this example. The server computes
the initial view and sends the aggregated data to the client.

When the user zooms in on a small range (e.g., first 2×, then 4×), the
client can use the data it has to animate to the new range and interpolate
with that data. Simultaneously, more data can be loaded from the server.

As described earlier, if the data arrives before the animation finishes,
the client can integrate it into the animation (optimistic animation).
Note that the developer only specifies the visualization and does not
have to worry about the details of how and when data is loaded.

If the user now pans the to the right (at resolution 2×), the client can
use the lower resolution data (4×) to interpolate what the data will look
like and the server only needs to send the part of the new range that the
client does not have yet.

3.5.2 Example 2: Heatmap with zoom and filter

As a second example consider a filtered heatmap that counts the number
of points that fall into each cell. The dataflow graph consists of a node
to read the dataset, a boundary filter, a filter, an aggregation, and scales
to convert from data domain to screen domain. For this example we
assume that the resolution of the heatmap is linked to the available pixel
resolution.

Initially, the dataflow graph is executed on the server up to (includ-
ing) the aggregation (Figure 3, left). This is because the aggregation
reduces the amount of data and the initial latency should be small. If the
user changes the filter condition, the server has to rerun the aggregation
of the filtered data and transfer the changes to the client. Since the
server knows the state of the client, it can send only the difference,
which are in most cases smaller (especially after compression). When
the user zooms in, the server again has to rerun the dataflow graph and
the client can use the data it has to interpolate and start the optimistic
animation. When the client displays the zoomed in subset of the data,
it can use the idle time to load the raw data for the current view and
change the partitioning as shown in Figure 3. This is possible because
the interface between the server and the client is flexible and can trans-
fer raw and aggregated data. Now that the raw data is in the client,
changes to the filter condition can run completely in the browser even
if the user is disconnected from the network.

If the filter is highly selective, the system could swap the filter
operators and allow panning and zooming only on data that is in the
client. If the network bandwidth bandwidthnet is low, a full-stack
framework can optimize this example even further and reduce the
resolution of the visualization and load data with higher resolution
later. Since the system is also aware of the available pixel resolution it
could automatically adapt the parameters of the aggregation. With the
right specification (§2.2), the visualization could also transition from a
heatmap to a scatterplot in sparse regions.

4 CONCLUSIONS AND FUTURE WORK

Today, building a visualization over large datasets requires expertise
in modern browser technologies, API design, and server development.
We have experienced this first hand when we developed a visualization
system for large profiling logs [26]. Researchers and developers have
spent decades optimizing databases and providing us with a simple
declarative interface so application developers do not have to implement
cost estimation, join reordering, or distributed execution. We should
provide a similar experience to visualization application developers.

In this paper we describe our vision of a system that automatically
generates the required components from a declarative visualization
specification. When implemented, the development of a visualization
application would take hours instead of months, and with improved
performance. The proposed system would optimize the dataflow from
bytes on disk to pixels on screen.

We hope that this work motivates future research on the prediction
model, the latency cost model, and the dataflow optimization algorithm.
Full-stack optimization and the ability to move data and computation
between the server and the client has the potential to enable new visual-
ization applications over vast amounts of data, even on low-connectivity
or mobile networks.

ACKNOWLEDGMENTS

This work was supported in part by the Intel Big Data ISTC, DARPA
XDATA, the Gordon & Betty Moore Foundation, and the University of
Washington eScience Institute.



REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems, pages 29–42. ACM, 2013.

[2] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-
tersen. An image-based approach to extreme scale in situ visualization
and analysis. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 424–434.
IEEE Press, 2014.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In ACM SIGMoD Record, volume 29, pages 261–272. ACM,
2000.

[4] L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction of query re-
sult sets for interactive visualizaton. In Big Data, 2013 IEEE International
Conference on, pages 1–8. IEEE, 2013.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. Visual-
ization and Computer Graphics, IEEE Transactions on, 17(12):2301–2309,
2011.

[6] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in information
visualization: using vision to think. Morgan Kaufmann, 1999.

[7] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou,
A. Kalinin, O. Papaemmanouil, and S. B. Zdonik. Query steering for
interactive data exploration. In CIDR, 2013.

[8] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity
while exploring massive time series. In Visual Analytics Science and
Technology, 2008. VAST’08. IEEE Symposium on, pages 59–66. IEEE,
2008.

[9] Y. Chen, J. Dunfield, and U. A. Acar. Type-directed automatic incremen-
talization. In Programming Language Design and Implementation, pages
299–310, June 2012.

[10] E. H. Chi. A taxonomy of visualization techniques using the data state
reference model. In Information Visualization, 2000. InfoVis 2000. IEEE
Symposium on, pages 69–75. IEEE, 2000.

[11] E. H.-H. Chi. A framework for information visualization spreadsheets.
PhD thesis, Citeseer, 1999.

[12] A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy. Efficient
spatial sampling of large geographical tables. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, pages
193–204. ACM, 2012.

[13] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foun-
dations and Trends in Databases, 1(1):1–140, 2007.

[14] P. R. Doshi, E. Rundensteiner, M. O. Ward, et al. Prefetching for vi-
sual data exploration. In Database Systems for Advanced Applications,
2003.(DASFAA 2003). Proceedings. Eighth International Conference on,
pages 195–202. IEEE, 2003.

[15] D. Fisher, I. Popov, S. Drucker, et al. Trust me, i’m partially right:
incremental visualization lets analysts explore large datasets faster. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1673–1682. ACM, 2012.

[16] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensi-
bility and efficient search. In Data Engineering, 1993. Proceedings. Ninth
International Conference on, pages 209–218. IEEE, 1993.

[17] K. Grochow, B. Howe, M. Stoermer, R. Barga, and E. Lazowska. Client+
cloud: evaluating seamless architectures for visual data analytics in the
ocean sciences. In Scientific and Statistical Database Management, pages
114–131. Springer, 2010.

[18] P. J. Guo and D. R. Engler. Towards practical incremental recomputation
for scientists: An implementation for the python language. In TaPP, 2010.

[19] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001.

[20] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster. Adapton: Com-
posable, demand-driven incremental computation. In ACM SIGPLAN
Notices, volume 49, pages 156–166. ACM, 2014.

[21] J. Heer and M. Bostock. Declarative language design for interactive
visualization. Visualization and Computer Graphics, IEEE Transactions
on, 16(6):1149–1156, 2010.

[22] Highsoft. Highcharts, 2009. http://www.highcharts.com/.
[23] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time

exploration of spatiotemporal datasets. Visualization and Computer Graph-
ics, IEEE Transactions on, 19(12):2456–2465, 2013.

[24] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual

analysis. Visualization and Computer Graphics, IEEE Transactions on,
20(12):2122–2131, 2014.

[25] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time visual querying of big
data. In Computer Graphics Forum, volume 32, pages 421–430. Wiley
Online Library, 2013.

[26] D. Moritz, D. Halperin, B. Howe, and J. Heer. Perfopticon: Visual query
analysis for distributed databases. In Computer Graphics Forum (EuroVis),
Cagliari, Italy, volume 34, 2015.

[27] Plotly. Plotly, 2012. https://plot.ly/.
[28] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensi-

ble algorithms for multi query optimization. In ACM SIGMOD Record,
volume 29, pages 249–260. ACM, 2000.

[29] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2015.

[30] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative interaction
design for data visualization. In Proceedings of the 27th annual ACM
symposium on User interface software and technology, pages 669–678.
ACM, 2014.

[31] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system.
In Proceedings of the 1979 ACM SIGMOD international conference on
Management of data, pages 23–34. ACM, 1979.

[32] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. Visualization
and Computer Graphics, IEEE Transactions on, 8(1):52–65, 2002.

[33] Trifacta. Vega: A Visualization Grammar. http://vega.github.
io/, 2014.

[34] R. Wesley, M. Eldridge, and P. T. Terlecki. An analytic data engine for
visualization in tableau. In Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of data, pages 1185–1194. ACM,
2011.

[35] L. Wilkinson. The grammar of graphics. Springer Science & Business
Media, 2006.

[36] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems: vision paper. Proceedings of the VLDB Endowment,
7(10):903–906, 2014.

http://www.highcharts.com/
https://plot.ly/
http://vega.github.io/
http://vega.github.io/

	Introduction
	Related Work
	Scalable Data Visualization Systems
	Declarative Visualization Specification
	Dynamic Query Optimization in Databases

	An Integrated Client-Server Visualization System
	Data Flow Graphs to Model Visualization Applications
	Dataflow Graph Optimizations
	Cost Model for a Low Latency Visualization System
	Latency Calculation
	Prediction Model

	Initial Design
	Examples
	Example 1: Line chart with zoom and pan
	Example 2: Heatmap with zoom and filter


	Conclusions and Future Work

